onsemi

Switch-mode Series NPN Silicon Power Transistor

BUV22

This device is designed for high speed, high current, high power applications.

Features

- High DC Current Gain:
 - h_{FE} min = 20 at I_C = 10 A
- Low $V_{CE(sat)}$, $V_{CE(sat)}$ max = 1.0 V at I_C = 10 A
- Very Fast Switching Times:
 - TF max = 0.35 μ s at I_C = 20 A
- Pb-Free Package is Available*

MAXIMUM RATINGS

Symbol	Rating	Value	Unit	
V _{CEO(SUS)}	Collector-Emitter Voltage	250	Vdc	
V _{CBO}	Collector-Base Voltage	300	Vdc	
V _{EBO}	Emitter-Base Voltage	7	Vdc	
V _{CEX}	V _{CEX} Collector-Emitter Voltage (V _{BE} = -1.5 V)			
V _{CER}	290	Vdc		
I_{C} Collector-Current – Continuous I_{CM} – Peak (PW \leq 10 ms)		40 50	Adc Apk	
I _B	I _B Base-Current Continuous		Adc	
PD	P_D Total Device Dissipation @ $T_C = 25^{\circ}C$		W	
T _J , T _{stg}	T _J , T _{stg} Operating and Storage Junction Temperature Range		°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Characteristics	Max	Unit
θ_{JC}	Thermal Resistance, Junction-to-Case	0.7	°C/W

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

40 AMPERES NPN SILICON POWER METAL TRANSISTOR 250 VOLTS – 250 WATTS

TO-204AE (TO-3) CASE 197A

MARKING DIAGRAM

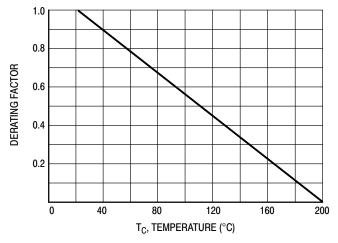
BUV22	= Device Code
G	= Pb-Free Package
А	= Assembly Location
Υ	= Year
WW	= Work Week
MEX	= Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
BUV22G	TO–204 (Pb–Free)	100 Units / Tray

DISCONTINUED (Note 1)

BUV22	TO-204	100 Units / Tray


 DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.

BUV22

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol		Characteristic			Unit
OFF CHARA	CTERISTICS (Note 2)				•
V _{CEO(sus)}	Collector–Emitter Sustaining Voltage $(I_C = 200 \text{ mA}, I_B = 0, L = 25 \text{ mH})$		250	-	Vdc
I _{CEX}	Collector Cutoff Current at Reverse Bias ($V_{CE} = 300 \text{ V}, V_{BE} = -1.5 \text{ V}$) ($V_{CE} = 300 \text{ V}, V_{BE} = -1.5 \text{ V}, T_C = 125^{\circ}C$)			3.0 12.0	mAdc
I _{CEO}	Collector-Emitter Cutoff Curren (V _{CE} = 200 V)	ıt	-	3.0	mAdc
V _{EBO}	Emitter-Base Reverse Voltage (I _E = 50 mA)	7	-	V	
I _{EBO}	Emitter–Cutoff Current (V _{EB} = 5 V)	-	1.0	mAdc	
SECOND BR	REAKDOWN			•	
I _{S/b}	Second Breakdown Collector C ($V_{CE} = 20 \text{ V}, t = 1 \text{ s}$) ($V_{CE} = 140 \text{ V}, t = 1 \text{ s}$)	12 0.15		Adc	
ON CHARAC	CTERISTICS (Note 2)				•
h _{FE}	$\label{eq:DC} \begin{array}{l} DC \mbox{ Current Gain} \\ (I_C = 10 \mbox{ A}, \mbox{ V}_{CE} = 4 \mbox{ V}) \\ (I_C = 20 \mbox{ A}, \mbox{ V}_{CE} = 4 \mbox{ V}) \end{array}$		20 10	60	
V _{CE(sat)}	Collector-Emitter Saturation Voltage ($I_C = 10 \text{ A}, I_B = 1 \text{ A}$) ($I_C = 20 \text{ A}, I_B = 2.5 \text{ A}$)			1.0 1.5	Vdc
V _{BE(sat)}	Base–Emitter Saturation Voltag ($I_C = 40 \text{ A}, I_B = 4 \text{ A}$)		1.5	Vdc	
DYNAMIC CI	HARACTERISTICS		·		
f _T	Current Gain — Bandwidth Pro $(V_{CE} = 15 \text{ V}, I_C = 2 \text{ A}, f = 4 \text{ M})$	8.0		MHz	
SWITCHING	CHARACTERISTICS (Resistive L	.oad)			-
t _{on}	Turn-on Time			0.8	μs
t _s	Storage Time	$(I_{C} = 20 \text{ A}, I_{B1} = I_{B2} = 2.5 \text{ A}, V_{CC} = 100 \text{ V}, R_{C} = 5 \Omega)$		2.0	1
t,	Eall Time			0.35	

t_f Fall Time 2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

0.35

Figure 1. Power Derating

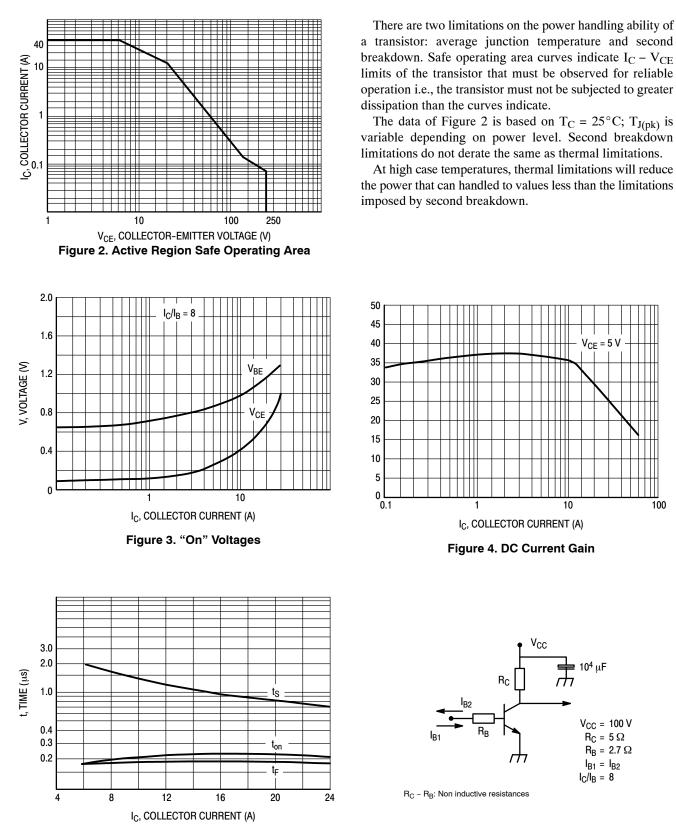
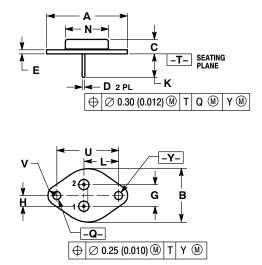



Figure 5. Resistive Switching Performance


Figure 6. Switching Times Test Circuit

100

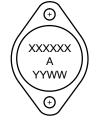
semi

SCALE 1:1

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR STYLE 2: PIN 1. EMITTER 2. BASE CASE: COLLECTOR

STYLE 3: PIN 1. GATE 2. SOURCE CASE: DRAIN

STYLE 4: PIN 1. ANODE = 1 2. ANODE = 2 CASE: CATHODES


TO-204 (TO-3) CASE 197A-05 ISSUE K

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

DATE 21 FEB 2000

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.530	REF	38.86 REF	
В	0.990	1.050	25.15	26.67
С	0.250	0.335	6.35	8.51
D	0.057	0.063	1.45	1.60
E	0.060	0.070	1.53	1.77
G	0.430 BSC		10.92 BSC	
н	0.215	BSC	5.46 BSC	
к	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89	BSC
Ν	0.760	0.830	19.31	21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
V	0.131	0.188	3.33	4.77

GENERIC **MARKING DIAGRAM***

XXXXX = Specific Device Code А = Assembly Locationa YY = Year ww = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42129B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO–204 (TO–3)		PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2024

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>