

Fast Rectifiers ES3A - ES3J

Features

- For Surface Mount Applications
- Glass-Passivated Junction
- Low-Profile Package
- Easy Pick and Place
- Built-in Strain Relief
- Superfast Recovery Times for High Efficiency
- These Devices are Pb-Free and Halid Free

MARKING DIAGRAM

CASE 403AG

Z = Assembly Plant Code

X = Last Digit of Year of Manufacture
YY = Weekly Code of Manufacture
DDDD = Specific Device Code

ORDERING INFORMATION

Part Number	Device Code Marking	Package	Shipping [†]
ES3A	ES3A	DO-214AB (SMC)	3000 / Tape & Reel
ES3B	ES3B	(Pb-Free)	3000 / Tape & Reel
ES3C	ES3C		3000 / Tape & Reel
ES3D	ES3D		3000 / Tape & Reel
ES3J	ES3J]	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ES3A - ES3J

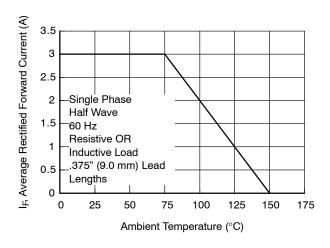
ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

		Value					
Symbol	Parameter	ES3A	ES3B	ES3C	ES3D	ES3J	Unit
V _{RRM}	Maximum Repetitive Reverse Voltage		100	150	200	600	V
I _{F(AV)}	Average Rectified Forward Current, .375" Lead Length $T_A = 75^{\circ}C$	3.0		Α			
I _{FSM}	Non-Repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine Wave	100		Α			
T _{STG}	Storage Temperature Range	-55 to +150		°C			
T_J	Operating Junction Temperature	−55 to +150		°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

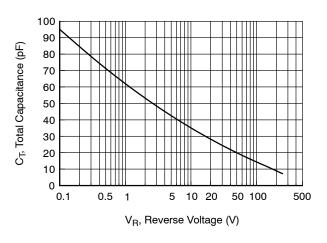
Symbol	Pa	Value	Unit	
P_{D}	Power Dissipation		1.66	W
$R_{ heta JA}$	Thermal Resistance,	Maximum Land Pattern: 16 x 16 mm	47	°C/W
	Junction to Ambient (Note 1)	Minimum Land Pattern: 2.6 x 3.2 mm	125	
$R_{ hetaJL}$	Thermal Resistance,	Maximum Land Pattern: 16 x 16 mm	12	°C/W
	Junction to Lead (Note 1)	Minimum Land Pattern: 2.6 x 3.2 mm	16	


^{1.} Device mounted on FR-4 PCB 0.013 mm.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

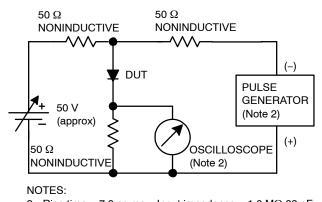
				Value					
Symbol	Parameter	Conditions		ES3A	ES3B	ES3C	ES3D	ES3J	Unit
V _F	Maximum Forward Voltage	I _F = 3.0 A		0.95			1.70	V	
t _{rr}	Reverse Recovery Time	I _F = 0.5 A, I _R = 1.0 A	Тур.	20			35	ns	
		I _R = 1.0 A I _{RR} = 0.25 A	Max.	30			45		
I _R			T _A = 25°C		10				μΑ
at Rated V _R		T _A = 100°C		500					
C _T	Total Capacitance	V _R = 4.0 V, f = 1.0 MHz		45				pF	

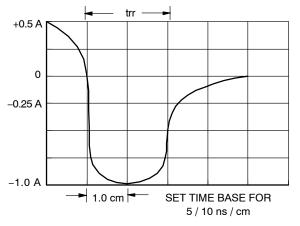
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL PERFORMANCE CHARACTERISTICS

100 ES3A-ES3D I_F, Forward Current (A) 10 ES3J 0.1 Pulse Width = 300 μs 2% Duty Cycle 0.01 0.6 8.0 1.6 1.0 1.2 1.8 0.4 1.4 V_F, Forward Voltage Drop (V)

Figure 1. Forward Current Derating Curve

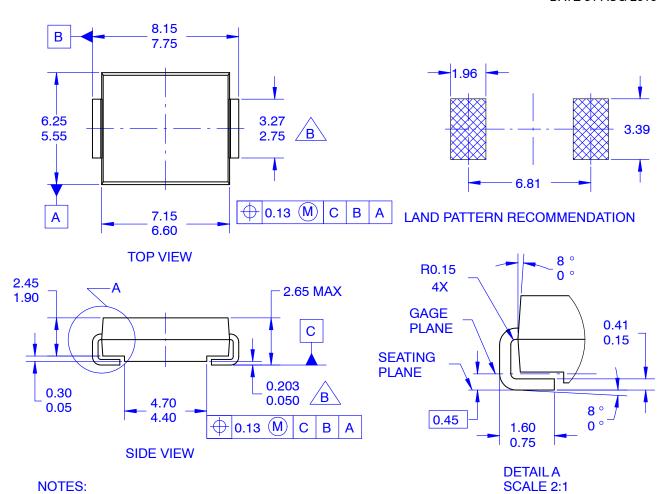

Figure 2. Forward Voltage Characteristics



1000 $T_{\Delta} = 100^{\circ}C$ I_R, Reverse Current (μA) 100 T_A = 75°C 10 T_A = 25°C 0.1 0 20 40 80 100 120 140 Percent of Rated Peak Reverse Voltage (%)

Figure 3. Total Capacitance

Figure 4. Reverse Current vs. Reverse Voltage



- 2. Rise time = 7.0 ns max; Input impedance = 1.0 M Ω 22 pF.
- 3. Rise time = 10 ns max; Source impedance = 50 Ω .

Figure 5. Reverse Recovery Time Characteristics and Test Circuit Diagram

DATE 31 AUG 2016

A. EXCEPT WHERE NOTED, CONFORMS TO JEDEC DO-214, VARIATION AB

B

DOES NOT COMPLY TO JEDEC STD. VALUE

- C. ALL DIMENSIONS ARE IN MILLIMETERS
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR PROTRUSIONS.
- E. DIMENSIONS AND TOLERANCING AS PER ASME Y14.5–2009
- F. LAND PATTERN STANDARD: DIOM7957X241M

DOCUMENT NUMBER:	98AON13442G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SMC		PAGE 1 OF 1			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales