

MOSFET - N-Channel, Shielded Gate, POWERTRENCH®

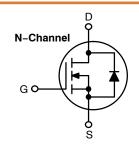
100 V, 76 A, 8.5 m Ω

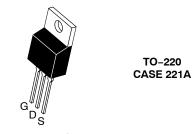
FDP8D5N10C, FDPF8D5N10C

General Description

This N-Channel MV MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features


- Max $R_{DS(on)} = 8.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 76 \text{ A}$
- Extremely Low Reverse Recovery Charge, Qrr
- 100% UIL Tested
- RoHS Compliant


Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

V _{DS}	R _{DS(ON)} MAX	I _D MAX
100 V	8.5 m Ω @ 10 V	76 A*

^{*}Drain current limited by maximum junction temperature.

MARKING DIAGRAM

XXX8D5N10C = Device Code (XXX = FDP, FDPF)

A = Assembly Location YWW = Date Code (Year & Week)

ZZ = Assembly Lot

1

ORDERING INFORMATION

Device	Package	Shipping
FDP8D5N10C	TO-220	800 Units / Tube
FDPF8D5N10C	TO-220F	1000 Units / Tube

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

			Rat	ing	
Symbol		Parameter	FDP8D5N10C	FDPF8D5N10C	Unit
V_{DS}	Drain to Source Voltage		100	100	V
V_{GS}	Gate to Source Voltage		±20	±20	V
I _D	Drain Current	– Continuous, T _C = 25°C (Note 3)	76	76*	Α
		- Continuous, T _C = 100°C (Note 3)	54	54*	
		- Pulsed (Note 1)	304	304*	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		18	31	mJ
P_{D}	Power Dissipation	T _C = 25°C	107	35	W
		T _A = 25°C	2.4	2.4	
T _J , T _{STG}	Operating and Storage Jul	nction Temperature Range	–55 to	+175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Drain current limited by maximum junction temperature.

- Pulsed Id please refer to Figure 11 and Figure 12 "Forward Bias Safe Operating Area" for more details.
 E_{AS} of 181 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 11 A, V_{DD} = 100 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 25 A.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDP8D5N10C	FDPF8D5N10C	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.4	4.2	°C/W
$R_{\theta JA}$	R _{θJA} Thermal Resistance, Junction to Ambient		62.5	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	_	_	V
ΔBV_{DSS}	Breakdown Voltage Temperature	I _D = 250 μA, referenced to 25°C	-	57	-	mV/°C
ΔT_{J}	Coefficient					
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μΑ
ı		V _{DS} = 80 V, T _J = 150°C	-	-	500	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 130 \mu A$	2.0	3.0	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 76 A	-	7.4	8.5	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 76 A	-	68	-	S
DYNAMIC (CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	-	1765	2475	pF
C _{oss}	Output Capacitance		_	1010	1415	pF
C _{rss}	Reverse Transfer Capacitance		_	16	25	pF
Rg	Gate Resistance		0.1	0.8	1.6	Ω
SWITCHING	G CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, I_D = 76 \text{ A}, V_{GS} = 10 \text{ V},$	-	12	22	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	11	20	ns
t _{d(off)}	Turn-Off Delay Time		-	18	28	ns
t _f	Fall Time		_	4	10	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 50 V, I_D = 76 A	-	25	34	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 50 V, I _D = 76 A	-	9	-	nC
Q_{gd}	Gate to Drain "Miller" Charge]	_	5	-	nC
Q _{oss}	Output Charge	V _{DD} = 50 V, V _{GS} = 0 V	-	68	-	nC
DRAIN-SO	URCE DIODE CHARACTERISTICS					
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	76	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	304	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 76 A	-	1.0	1.3	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, V_{DD} = 50 \text{ V}, I_F = 76 \text{ A},$	-	58	92	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	53	85	nC
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, V_{DD} = 50 \text{ V}, I_F = 76 \text{ A},$	-	51	81	ns
	Reverse Recovery Charge	dl _F /dt = 300 A/μs		+	-	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Normalized

A_{DS(on)}, Drain to Source On-Resistance (mΩ)

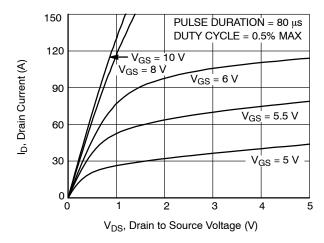


Figure 1. On-Region Characteristics

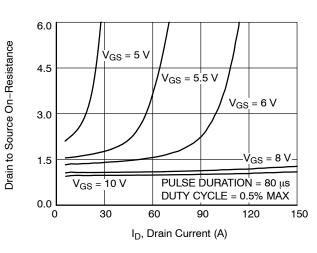


Figure 2. Normalized On–Resistance vs.

Drain Current and Gate Voltage

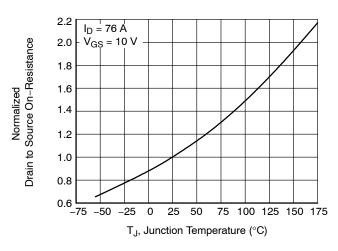


Figure 3. Normalized On–Resistance vs. Junction Temperature

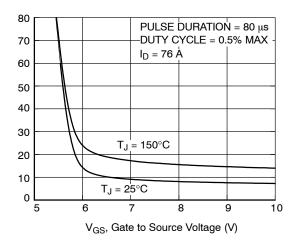


Figure 4. On-Resistance vs. Gate to Source Voltage

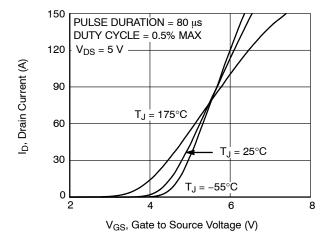


Figure 5. Transfer Characteristics

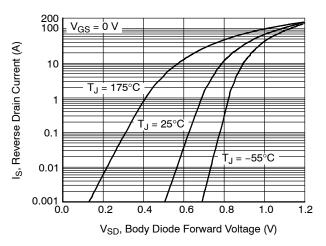


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted) (continued)

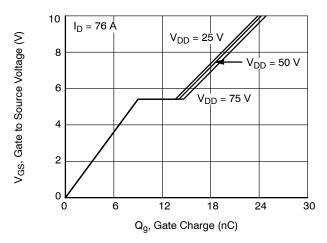


Figure 7. Gate Charge Characteristics

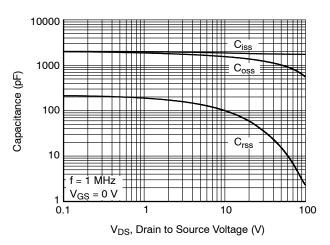


Figure 8. Capacitance vs. Drain to Source Voltage

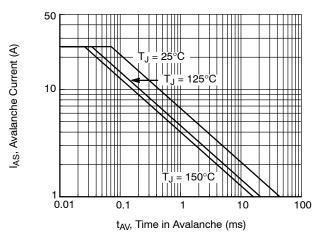


Figure 9. Unclamped Inductive Switching Capability

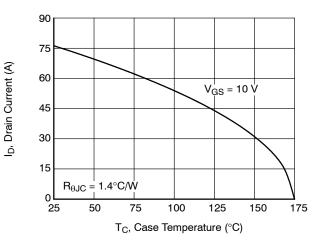


Figure 10. Maximum Continuous
Drain Current vs. Case Temperature
for FDP8D5N10C

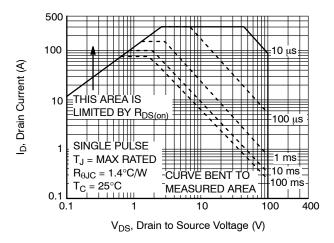


Figure 11. Forward Bias Safe Operating
Area for FDP8D5N10C

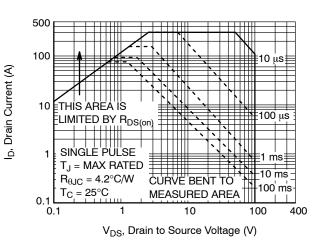
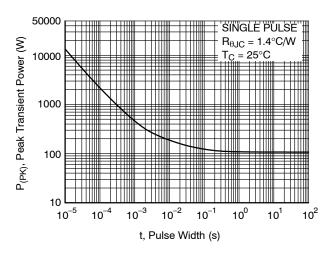



Figure 12. Forward Bias Safe Operating
Area for FDPF8D5N10C

TYPICAL PERFORMANCE CHARACTERISTICS (T, I = 25°C unless otherwise noted) (continued)

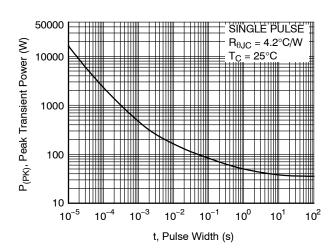


Figure 13. Single Pulse Maximum Power Dissipation for FDP8D5N10C

Figure 14. Single Pulse Maximum Power Dissipation for FDPF8D5N10C

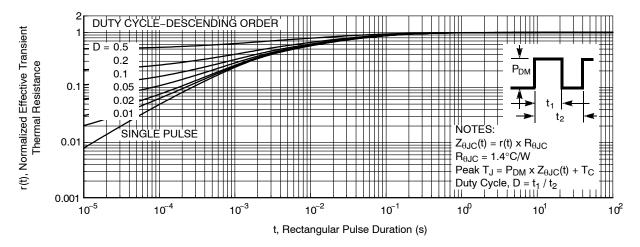


Figure 15. Junction-to-Case Transient Thermal Response Curve for FDP8D5N10C

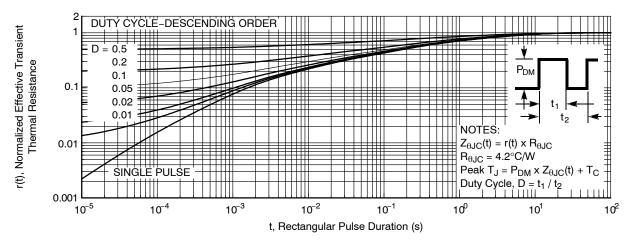
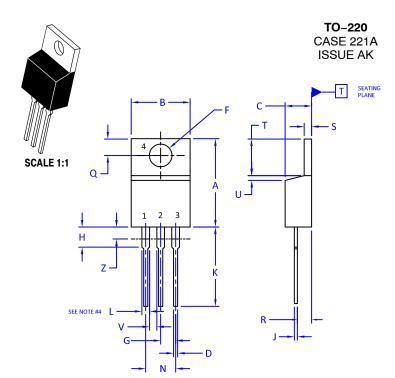
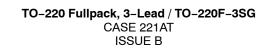



Figure 16. Junction-to-Case Transient Thermal Response Curve for FDPF8D5N10C

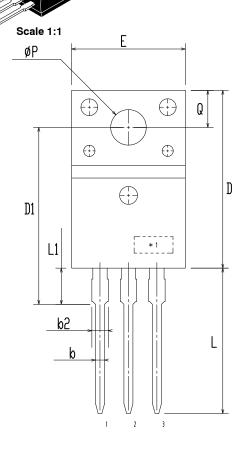
DATE 13 JAN 2022

NOTES:

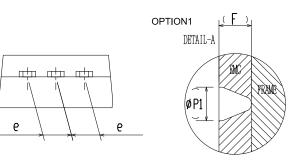
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.


4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04


STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.		STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN	STYLE 12: PIN 1. 2. 3. 4.	

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220		PAGE 1 OF 1


onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 JAN 2021

DIM	L MIL	LIMITERS	
ויונע	MIN	NDM	MAX
Α	4.50	4.70	4.90
A1	2.56	2.76	2.96
A2	2.34	2.54	2.74
b	0.70	0.80	0.90
b2	~	2	1.47
С	0.45	0.50	0.60
D	15.67	15.87	16.07
D1	15.60	15.80	16.00
E	9.96	10.16	10.36
е	2.34	2.54	2.74
F	~	0.84	2
H1	6.48	6.68	6.88
L	12.78	12.98	13.18
L1	3.03	3.23	3.43
ØΡ	2.98	3.18	3.38
Ø P1	~	1.00	~
Q	3.20	3.30	3,40

MILLIMITEDS

NOTES:

- A. DIMENSION AND TOLERANCE AS ASME Y14.5-2009
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUCSIONS.

C

C. OPTION 1 - WITH SUPPORT PIN HOLE OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER: 98AON67439E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: TO-220 FULLPACK, 3-LEAD / TO-220F-3SG PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales