ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

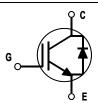
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor $^\circ$

FGD3N60LSD IGBT

Features

- · High Current Capability
- Very Low Saturation Voltage : V_{CE(sat)} = 1.2 V @ I_C = 3A
- · High Input Impedance


Applications

- · HID Lamp Applications
- Piezo Fuel Injection Applications

Description

ON Semiconductor's Insulated Gate Bipolar Transistors (IGBTs) provide very low conduction losses. The device is designed for applica-tions where very low On-Voltage Drop is a required feature.

Absolute Maximum Ratings

Symbol	Description		FGD3N60LSD	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 25	V	
I _C	Collector Current	@ T _C = 25°C	6	Α	
	Collector Current	@ T _C = 100°C	3	Α	
I _{CM (1)}	Pulsed Collector Current	(1)	25	А	
lf	Diode Continous Forward Current	@ T _C = 100°C	3	Α	
I FM	Diode Maximum Forward Current		25	Α	
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	40	W	
	Derating Factor		0.32	W/°C	
T _J	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds	;	250	°C	

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units	
R _θ JC (IGBT)	Thermal Resistance, Junction-to-Case		3.1	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (PCB Mount) (2)		100	°C/W	

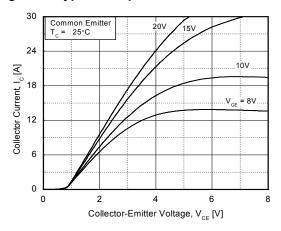
Notes

(2) Mounted on 1" squre PCB (FR4 or G-10 Material)

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGD3N60LSD	FGD3N60LSDTM	D-PAK	380mm	16mm	2500

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charact	teristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	600			V
$\Delta B_{VCES}/$ ΔT_{J}	Temperature Coefficient of Breakdown Voltage	V_{GE} = 0V, I_{C} = 1mA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0V			250	uA
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0V			± 100	nA
On Charact	eristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 3mA, V _{CE} = V _{GE}	2.5	3.2	5.0	V
V _{CE(sat)}	Collector to Emitter	I _C = 3A, V _{GE} = 10V		1.2	1.5	V
()	Saturation Voltage	I _C = 6A, V _{GE} = 10V		1.8		V
Dynamic C	haracteristics					
C _{ies}	Input Capacitance	V _{CE} = 25V, V _{GE} = 0V,		185		pF
C _{oes}	Output Capacitance	f = 1MHz		20		pF
C _{res}	Reverse Transfer Capacitance			5.5		pF
	Characteristics	Voc = 480 V Io = 3A		40		ns
$t_{d(on)}$	Turn-On Delay Time	V_{CC} = 480 V, I_{C} = 3A, R_{G} = 470 Ω , V_{GE} = 10V, Inductive Load, T_{C} = 25°C		40		ns
t _r	Rise Time			40		ns
t _{d(off)}	Turn-Off Delay Time			600		ns
t _f	Fall Time			600		ns
E _{on}	Turn-On Switching Loss			250		uJ
E_{off}	Turn-Off Switching Loss			1.00		mJ
E_{ts}	Total Switching Loss			1.25		mJ
$t_{d(on)}$	Turn-On Delay Time	$V_{CC} = 480 \text{ V}, I_{C} = 3A,$		40		ns
t_r	Rise Time	$R_G = 470\Omega$, $V_{GE} = 10V$, Inductive Load, $T_C = 125^{\circ}C$		45		ns
$t_{d(off)}$	Turn-Off Delay Time			620		ns
t _f	Fall Time			800		ns
E _{on}	Turn-On Switching Loss			300		uJ
E _{off}	Turn-Off Switching Loss			1.9		mJ
E _{ts}	Total Switching Loss			2.2		mJ
Qg	Total Gate Charge	V _{CE} = 480 V, I _C = 3A,		12.5		nC
Q _{ge}	Gate-Emitter Charge	V _{GE} = 10V		2.8		nC
	Cata Callacter Charge			4.9		nC
Q_{gc}	Gate-Collector Charge					

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condi	Min.	Тур.	Max.	Units	
V_{FM}	Diode Forward Voltage	I _F = 3A	T _C = 25°C		1.5	1.9	V
			T _C = 100°C		1.55		
t _{rr}	di/dt = 100A/us	T _C = 25°C		234		ns	
		VR = 200V	T _C = 100°C				
I _{rr}	Diode Peak Reverse Recovery Current		T _C = 25°C		2.64		Α
			T _C = 100°C				
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C		309		nC
			T _C = 100°C				1

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

Figure 3. Typical Output Characteristics

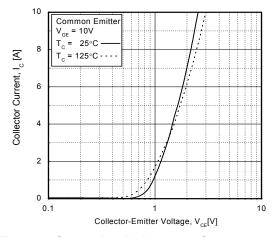


Figure 5. Saturation Voltage vs. Case

Figure 2. Typical Output Characteristics

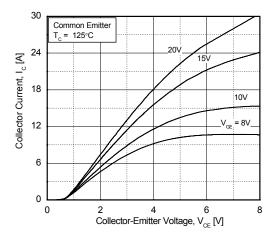
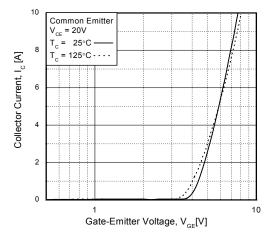
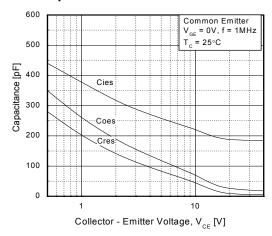




Figure 4. Transfer Characteristics

Figure 6. Capacitance Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Gate Charge

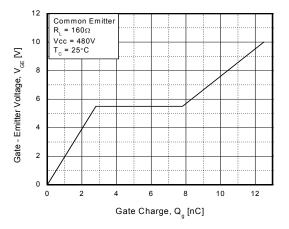


Figure 9. Turn-Off Characteristics vs.
Gate Resistance

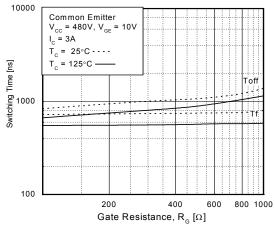


Figure 11. Turn-On Characteristics vs. Collector Current

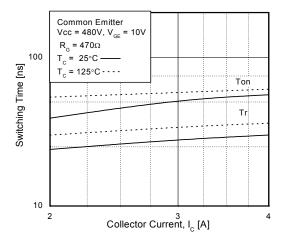


Figure 8. Turn-On Characteristics vs. Gate Resistance

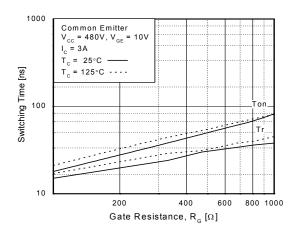


Figure 10. Switching Loss vs. Gate Resistance

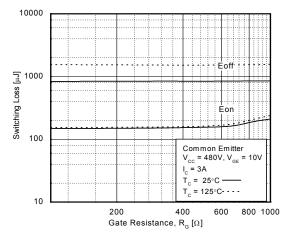
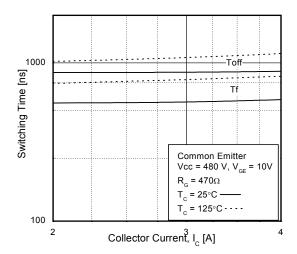
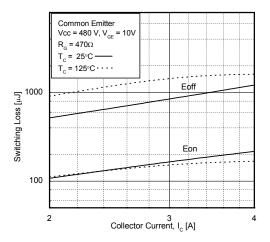




Figure 12. Turn-Off Characteristics vs. Collector Current

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

Figure 14. Forward Characteristics

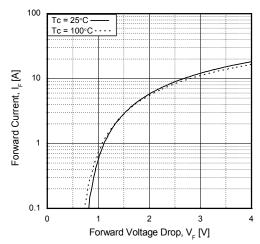


Figure 15. Forward Voltage Drop Vs Tj

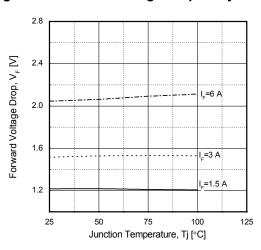
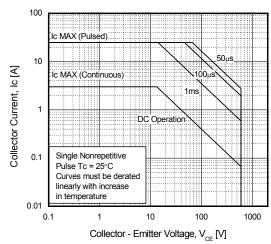
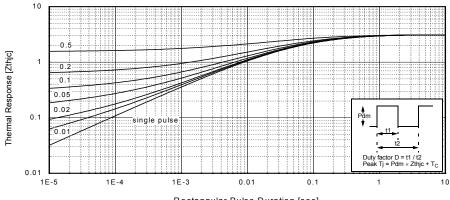
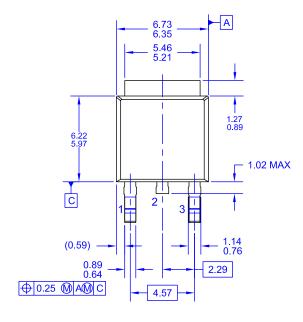
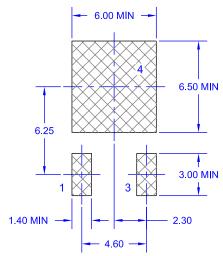


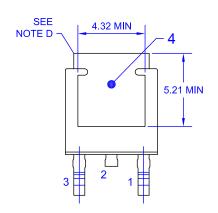
Figure 16. SOA Characteristics

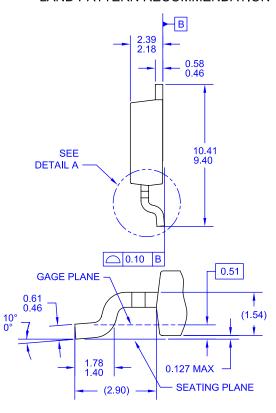




Figure 17. Transient Thermal Impedance of IGBT



Rectangular Pulse Duration [sec]


Mechanical Dimensions


D-PAK

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- D) HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION.
- E) PRESENCE OF TRIMMED CENTER LEAD
- IS OPTIONAL.
 F) DIMENSIONS ARE EXCLUSSIVE OF BURSS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD
- TO220P1003X238-3N.
 H) DRAWING NUMBER AND REVISION: MKT-TO252A03REV8

Dimensions in Millimeters

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative