ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

PLL Frequency Synthesizer for Tuners in Radio/Cassette Players

Overview

The LC72131K and LC72131KMA are PLL frequency synthesizers for use in tuners in radio/cassette players.

They allow high-performance AM/FM tuners to be implemented easily.

Features

- High speed programmable dividers
- FMIN: 10 to 160 MHz····· pulse swallower
- (built-in divide-by-two prescaler) • AMIN: 2 to 40 MHz pulse swallower
- 0.5 to 10 MHz direct division
- IF counter
- IFIN: 0.4 to 12 MHz ······ AM/FM IF counter
- Reference frequencies
 - Twelve selectable frequencies (4.5 or 7.2 MHz crystal)
 - 100, 50, 25, 15, 12.5, 6.25, 3.125, 10, 9, 5, 3, 1 kHz
- Phase comparator
 - Dead zone control
 - Unlock detection circuit
 - Deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
 - Dedicated output ports: 4
 - Input or output ports: 2
- Support clock time base output
- Serial data I/O
 - Support CCB* format communication with the system controller.
- Operating ranges
 - Supply voltage : 4.5 to 5.5 V
 - Operating temperature : -40 to $+85^{\circ}$ C
- Packages
 - LC72131K : DIP22S (300mil)
 - LC72131KMA : MFP20J (300mil)

ON Semiconductor®

www.onsemi.com

PDIP22 / DIP22S (300 mil) [LC72131K]

SOIC20W / MFP20J (300 mil) [LC72131KMA]

* Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

ORDERING INFORMATION

See detailed ordering and shipping information on page 23 of this data sheet.

Specifications

Absolute Maximum Ratings at Ta = 25° C, V_{SS} = 0 V

Parameter	Symbol	Pins	Conditions	Ratings	Unit
Supply voltage	V _{DD} max	V _{DD}		-0.3 to +7.0	V
Maximum input voltage	V _{IN} 1 max	CE, CL, DI, AIN		-0.3 to +7.0	V
	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN		–0.3 to V _{DD} +0.3	V
	V _{IN} 3 max	<u>101, 102</u>		–0.3 to +15	V
Maximum output	V _O 1 max	DO		-0.3 to +7.0	V
voltage	V _O 2 max	XOUT, PD		–0.3 to V _{DD} +0.3	V
	V _O 3 max	$\overline{BO1}$ to $\overline{BO4}$, $\overline{IO1}$, $\overline{IO2}$,		0.2 to 145	N/
		AOUT		-0.3 to +15	V
Maximum output	I _O 1 max	BO1		0 to 3.0	mA
current	I _O 2 max	DO, AOUT		0 to 6.0	mA
	I _O 3 max	$\overline{BO2}$ to $\overline{BO4}$, $\overline{IO1}$, $\overline{IO2}$		0 to 10	mA
Allowable power dissipation	Pd max		Ta ≤ 85°C [LC72131K]	350	mW
			Ta ≤ 85°C [LC72131KMA]	180	mW
Operating temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +125	°C

Note 1: Power pins V_{DD} and V_{SS}: Insert a capacitor with a capacitance of 2,000pF or higher between these pins when using the IC.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Ranges at Ta = -40°C to +85°C, V_{SS} = 0 V

Deromotor	Symbol	Dina	Conditions		Ratings		unit
Farameter	Symbol	FIIIS	Conditions	min	typ	max	um
Supply voltage	V _{DD}	V _{DD}		4.5		5.5	V
Input high-level voltage	V _{IH} 1	CE, CL, DI		0.7V _{DD}		6.5	V
	V _{IH} 2	<u>101, 102</u>		0.7V _{DD}		13	V
Input low-level voltage	VIL	CE, CL, DI, IO1, IO2		0		0.3V _{DD}	V
Output voltage	V _O 1	DO		0		6.5	V
	V _O 2	$\overline{BO1}$ to $\overline{BO4}$, $\overline{IO1}$, $\overline{IO2}$,				10	N
		AOUT		0		13	V
Input frequency	fIN1	XIN	V _{IN} 1	1.0		8.0	MHz
	fIN2	FMIN	V _{IN} 2	10		160	MHz
	fIN3	AMIN	V _{IN} 3	2.0		40	MHz
	fIN4	AMIN	V _{IN} 4	0.5		10	MHz
	fIN5	IFIN	V _{IN} 5	0.4		12	MHz
Supported crystals	X'tal	XIN, XOUT	Note 1	4.0		8.0	MHz
Input amplitude	V _{IN} 1	XIN	fIN1	400		1500	mVrms
High lovel clock pulse	V _{IN} 2-1	FMIN	f = 10 to 130 MHz	40		1500	mVrms
width to H CL [Figure 1]	V _{IN} 2-2	FMIN	f = 130 to 160 MHz	70		1500	mVrms
[Figure 2] 160 ns	V _{IN} 3	AMIN	fIN3	40		1500	mVrms
Low-level clock pulse	V _{IN} 4	AMIN	fIN4	40		1500	mVrms
width	VIN ⁵	IFIN	fIN5 (IFS=1)	40		1500	mVrms
	V _{IN} 6	IFIN	fIN5 (IFS=0)	70		1500	mVrms
Data setup time	tSU	DI, CL	Note 2	0.75			μS
Data hold time	tHD	DI, CL	Note 2	0.75			μs
Clock low-level time	tCL	CL	Note 2	0.75			μS
Clock high-level time	tCH	CL	Note 2	0.75			μS
CE wait time	tEL	CE, CL	Note 2	0.75			μS
CE setup time	tES	CE, CL	Note 2	0.75			μS
CE hold time	tEH	CE, CL	Note 2	0.75			μS
Data latch change time	tLC		Note 2			0.75	μS
Data output time	tDC	DO, CL	Differs depending				
	tDH DO, CE		on the value of the pull-up resistor. Note 2			0.35	μS

Note 1: Recommended crystal oscillator CI values:

 $CI \leq 120~\Omega$ (For a 4.5 MHz crystal)

 $CI \leq 70~\Omega$ (For a 7.2 MHz crystal)

The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other factors. Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.

Note 2: Refer to "Serial Data Timing".

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics in the Allowable Operating Ranges

		5.			Ratings		unit
Parameter	Symbol	Pins	Conditions	min	typ	max	unit
Built-in feedback	Rf1	XIN			1.0		MΩ
resistance	Rf2	FMIN			500		kΩ
	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
Built-in pull-down	Rpd1	FMIN			200		kΩ
resistor	Rpd2	AMIN			200		kΩ
Hysteresis	VHYS	CE, CL, DI, 101, 102			0.1V _{DD}		V
Output high-level voltage	VOH	PD	I _O = 1 mA	V _{DD} -0.1			V
Output low-level	V _{OL} 1	PD	I _O = 1 mA			1.0	V
voltage	V _{OL} 2	BO1	I _O = 0.5 mA			0.5	V
		-	I _O = 1 mA			1.0	V
	V _{OL} 3	DO	I _O = 1 mA			0.2	V
	-		I _O = 5 mA			1.0	V
	V _{OL} 4	$\overline{BO2}$ to $\overline{BO4}$ $\overline{IO1}$ $\overline{IO2}$	I _O = 1 mA			0.2	V
		002 10 00 1, 10 1, 10 2	$I_0 = 5 \text{ mA}$			1.0	V
			$I_{O} = 8 \text{ mA}$			1.6	V
	V _{OI} 5	AOUT	I _O = 1 mA			<u> </u>	
	02		AIN = 1.3 V			0.5	V
Input high-level	I _{IH} 1	CE, CL, DI	V _I = 6.5 V			5.0	μA
current	I _{IH} 2	<u>101, 102</u>	V _I = 13 V			5.0	μA
	I _{IH} 3	XIN	V _I = V _{DD}	2.0		11	μA
	IIH4	FMIN, AMIN	V _I = V _{DD}	4.0		22	μA
	I _{IH} 5	IFIN	V _I = V _{DD}	8.0		44	μA
	IIH6	AIN	VI = 6.5 V			200	nA
Input low-level current	կլ1	CE, CL, DI	V ₁ = 0 V			5.0	μA
	l _{IL} 2	101 102	V ₁ = 0 V			5.0	μA
	lu 3	XIN	VI = 0 V	2.0		11	цА
	lii 4	FMIN, AMIN	V ₁ = 0 V	4.0		22	цА
	lıı 5	IFIN	VI = 0 V	8.0		44	μА
	<u>اير ا</u>	AIN	V ₁ = 0 V			200	nA
Output off leakage current	IOFF1	BO1 to BO4, AOUT,	V _O = 13 V			5.0	μA
		101, 102	Vo = 6 5 V			5.0	•
High-level three state						5.0	μΑ
off leakage current	IOITTI	FD	v0 - vDD		0.01	200	nA
Low-level three-state off leakage current	IOFFL	PD	V _O = 0 V		0.01	200	nA
Input capacitance	CIN	FMIN			6		pF
Current drain	I _{DD} 1	V _{DD}	X'tal = 7.2 MHz f _{IN} 2 = 130 MHz		5	10	mA
			$V_{IN}2 = 40 \text{ mVrms}$				
	I _{DD} 2	VDD	PLL block stopped (PLL INHIBIT) X'tal oscillator operating		0.5		mA
	I _{DD} 3	VDD	(X'tal = 7.2 MHz) PLL block stopped X'tal oscillator operating			10	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Serial Data Timing

When stopped with CL low

When stopped with CL high

Package Dimensions

unit : mm

[LC72131K]

PDIP22 / DIP22S (300 mil)

CASE 646AV ISSUE A

DDD = Additional Traceability Data

*This information is generic. Pb-Free indicator, "G" or microdot "•", may or may not be present.

Package Dimensions

unit : mm

[LC72131KMA]

SOIC20W / MFP20J (300 mil) CASE 751DE

CASE 751 ISSUE O

Pin Assignments

Block Diagram

www.onsemi.com 7

Pin Functions

Symbol	Pin LC72131K	No. LC72131KMA	Туре	Functions	Circuit configuration
XIN XOUT	1 22	1 20	X'tal OSC	Crystal resonator connection (4.5MHz/7.2MHz)	
FMIN	16	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 160MHz. The input signal passes through the internal divide-by-two prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	
AMIN	15	13	Local oscillator signal input	 AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: The input frequency range is 2 to 40MHz. The signal is directly input to the swallow counter. The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: The input frequency range is 0.5 to 10MHz. The signal is directly input to a 12-bit programmable divider. The divisor can be in the range 4 to 4095, and the divisor used will be the value set. 	
CE	3	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	□ <u> </u> \$>>
DI	4	3	Input data	Inputs serial data transferred from the controller to the LC72131K/KMA.	
CL	5	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	
DO	6	5	Output data	Outputs serial data transferred from the LC72131K/KMA to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	
V _{DD}	17	15	Power supply	The LC72131K/KMA power supply pin (V _{DD} =4.5 to 5.5V) The power on reset circuit operates when power is first applied.	-
Vss	21	19	Ground	The LC72131K/KMA ground	-
BO1 BO2 BO3 BO4	7 8 9 10	6 7 8 9	Output port	Dedicated output pins The output states are determined by BO1 to BO4 bits in the serial data. Data: 0=open, 1=low A time base signal (8Hz) can be output from the BO1 pin. (When the serial data TBC bit is set to 1.) Care is required when using the BO1 pin, since it has a higher on impedance that the other output ports (pins BO2 to BO4).	
	11 13	10 12	I/O port	 I/O dual-use pins The direction (input or output) is determined by bits IOC1 and IOC2 in the serial data. Data: 0=input port, 1=output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low=0 data value high=1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0=open, 1=low These pins function as input pins following a power on reset. 	

Continued on next page.

Continued from preceding page.

Cumbol	Pin	No.	Turne	Functions	Circuit configuration			
Symbol	LC72131K	LC72131KMA	туре	Functions				
PD	18	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.				
AIN AOUT	19 20	17 18	LPF amplifier transistors	The n-channel MOS transistor used for the PLL active low-pass filter.				
IFIN	12	11	IF counter	Accepts an input in the frequency range 0.4 to 12MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64ms.				

DI Control Data (Serial Data Input) Structure

[1] IN1 mode

[2] IN2 mode

Control Data Functions

No.	Control block/data					Functions		Related data				
(1)	Programmable	Data that	sets the div	visor of the	programm	able divider.						
	divider data	A binary v	alue in whi	ch P15 is t	the MSB. T	he LSB changes dep	ending on					
	P0 to P15	DVS and S	SNS. (*: do	on't care)								
		DVS	SNS	LSB	Divi	isor setting (N)	Actual divisor					
		1	*	P0	2	72 to 65535	Twice the value of the setting					
		0	1	P0	2	72 to 65535	The value of the setting					
		0	0	P4		4 to 4095	The value of the setting					
		Note: P0 t	o P3 are ig	nored whe	en P4 is the	ELSB.						
	DVG ONG	O a la ata th				1) for the survey of the surve	ble divides evitebre					
	DV3, 5N3	the input f	e signal inp	ango (*: d	(IIN OF FIVII)	i) for the programma	ble divider, switches					
			equency	l								
		DVS	SNS		Input pin		Input frequency range					
		1	*		FMIN		10 to 160MHz					
		0	1		AMIN		2 to 40MHz					
		0	0		AMIN		0.5 to 10MHz					
		Note: See	the "Progr	ammable I	mmable Divider Structure" item for more information.							
(2)	Reference divider	Reference	frequency	(fref) sele	ction data.							
	data	R3	R2	R1	R1 R0 Reference frequency							
	R0 to R3	0	0	0	0		100kHz					
		0	0	0	1		50					
		0	0	1	0		25					
		0	0	1	1		25					
			1	0	1		6.25					
		0	1	1	0		3.125					
		0	1	1	1		3.125					
		1	0	0	0		10					
		1	0	0	1		9					
		1	0	1	0		5					
		1	0	1	1		1					
		1	1	0	0		3					
		1	1	0	1		15					
		1	1	1	0	* PLL INH	IBIT + X'tal OSC STOP					
		1	1	1	1	* PI	L INHIBIT					
		Note *: PL	L INHIBIT									
		Th	e program	mable divid	der block a	nd the IF counter blo	ck are stopped, the FMIN, AMIN,					
		an	d IFIN pins	are set to	the pull-do	wn state (ground), a	nd the charge pump goes to the					
		hig	h impedar	nce state.								
	XS	Crystal res	sonator sel	ection								
		XS=0: 4	=0: 4.5MHz									
		XS=1: 7	XS=1: 7.2MHz									
(2)	IE counter control		winz treque	ency is sele	ected after	me power-on reset.		150				
(3)	IF counter control	IF counter	measuren	nent start c	lata			IFS				
	CTF	=0.0	ounter ree	• et								
	GT0. GT1	Determine	s the IF co	ounter mea	surement r	period.						
	,	GT1		то	Measure	ment time (ms)	Wait time (ms)					
					measure	4						
				1		4	3 to 4					
				o		32	7 to 8					
	1 1 64						7 to 8					
		Note: See	the "IF Co	unter Strue	cture" item	for more information.						

Continued on next page.

No	Control block/data				Function	3		Related data				
(4)		On a sifi sa th						Telated data				
(4)	I/O port specification	Specifies the			ectional pins ic							
		Data. 0=II	iput mode,	r=output mode	:							
(5)		Data that da				1 101 and 102 autout narts		1001				
(5)		Data that de	etermines th	e output from t		+, IOT and IO2 output ports		1001				
	801 to 804	Data: 0=0	pen, 1=low					1002				
(0)	IO1, IO2	The data=0	(open) state	e is selected ar	ter the power-o	on reset.						
(0)			itermines in		1							
	DOCU DOC1	DOC2		CIE								
	DOCI	0	0	0	Open							
	0002	0	0	1	Low whe	en the unlock state is detected		1001				
		0	1	0	end-UC	*1		1001				
		0	1	1	Open			1002				
		1 0 0 Open										
		1	0	1	The IO1	pin state *2						
		1	1	0	The IO2	pin state *2						
		1										
		The open state is selected after the power-on reset.										
		The open st	ate is selec	ted after the po	wer-on reset.							
		Note: 1. end	I-UC: Check	tor IF counter	measurement	completion						
		DO pin		$\overline{1}$		1						
						¥{`						
			(1)	Count start	(2) C	ount and (3)CE: High						
			(1)	Count start	(2) 0	Gunt end (3)CE. High						
		(1)	When end-	UC is set and t	he IF counter i	s started (i.e., when CTE is change	d from					
			zero to one), the DO pin a	utomatically g	pes to the open state.						
		(2)										
			measureme	ent completion	state.							
		(3)	Depending	on serial data	I/O (CE: high)	the DO pin goes to the open state.						
		Note: 2. Go	es to the op	en state if the I	/O pin is speci	fied to be an output port.						
		Caution: Th	e state of th	e DO pin durin	g a data input	period (an IN1 or IN2 mode period	with CE					
		hig	h) will be op	oen, regardless	of the state of	the DO control data (DOC0 to DO	C2).					
		Als	o, the DO p	in during a dat	a output period	d (an OUT mode period with CE hig	h) will					
		out	put the con	tents of the inte	ernal DO serial	data in synchronization with the CL	_ pin					
		sig	nal, regardl	ess of the state	e of the DO cor	ntrol data (DOC0 to DOC2).						
(7)	Unlock detection	Selects the	phase error	(¢E) detection	width for chec	king PLL lock.		DOC0				
	data	A phase err	or in excess	of the specifie	d detection wie	dth is seen as an unlocked state.		DOC1				
	UL0, UL1											
		UL1 UL0										
		0 0 stopped Open										
		0 1 0 ∳E is output directry										
		1	0	±0.	55µs	φE is extended by 1 to 2ms						
		1	1	±1	1.11	<u>↑</u>						
		Note: In the	unlocked st	tate the DO nin	ages low and	the LIL bit in the serial data become	e zero					

Continued on next page.

Continued from preceding page.

No.	Control block/data			F	unctions	Related data						
(8)	Phase comparator	Controls	the phas	e comparator dead zone.								
	control data DZ0, DZ1	DZ1	DZ0	Dead zone mode								
	,	0	0	DZA								
		0	1	DZB								
		1	0	DZC								
		1	1	DZD								
		Dead zon	Dead zone width: DZA <dzb<dzc<dzd< td=""></dzb<dzc<dzd<>									
(9)	Clock time base	Setting TI	BC to one	causes an 8Hz, 40% dut	y clock time base signal to be output from the $\overline{BO1}$	BO1						
	TBC	pin. (BO1	in. (BO1 data is invalid in this mode.)									
(10)	Charge pump control	Forcibly c	orcibly controls the charge pump output.									
	data	DLC	С	harge pump output								
	DLC	0	0 Normal operation									
		1	1 Forced low									
		Note: If de	eadlock o	ccurs due to the VCO cor	 itrol voltage (Vtune) going to zero and the VCO							
		osc	illator stor	oping, deadlock can be cl	eared by forcing the charge pump output to low and							
		sett	ing Vtune	to V _{CC} . (This is the dea	dlock clearing circuit.)							
(11)	IF counter control	This data	must be s	set 1 in normal mode.								
	data	IFS The	ough if thi	s value is set to zero, the	system enters input sensitivity degradation mode,							
	IFS	and the	sensitivit	y is reduced to 10 to 30m	Vrms.							
		* See th	ne "IF Cou	inter Operation" item for o	letails.							
(12)	LSI test data	LSI test d	ata									
	TEST0 to 2	TEST0 -	TESTO 7									
		TEST1	These	values must all be set to	0.							
		TEST2 _	L									
		These tes	st data are	set to 0 automatically aff	er the power-on reset.							
(13)	DNC	Don't care	e. This da	ta must be set to 0.								

DO Control Data (Serial Data Output) Structure

[3] OUT Mode

Control Data Functions

No.	Control block/data	Functions	Related data
(1)	I/O port data	Latched from the pin states of the $\overline{101}$ and $\overline{102}$ I/O ports.	IOC1
	12, 11	These values follow the pin states regardless of the input or output setting.	IOC2
		$I1 \leftarrow \overline{IO1}$ pin state \Box High: 1	
		$I2 \leftarrow \overline{IO2}$ pin state \Box Low: 0	
(2)	PLL unlock data	Latched from the state of the unlock detection circuit.	UL0
	UL	$UL \leftarrow 0$: Unlocked	UL1
		UL \leftarrow 1: Locked or detection stopped mode	
(3)	IF counter binary	Latched from the value of the IF counter (20-bit binary counter).	CTE
	counter	C19 \leftarrow MSB of the binary counter	GT0
	C19 to C0	$C0 \leftarrow LSB$ of the binary counter	GT1

Serial Data I/O Methods

The LC72131K/KMA inputs and outputs data using Our CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.

	I/O manda	Address								Function								
	I/O mode	B0	B1	B2	B3	A0	A1	A2	A3	Function								
[1]	IN1 (82)	0	0	0	1	0	1	0	0	 Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data. 								
[2]	IN2 (92)	1	0	0	1	0	1	0	0	 Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data. 								
[3]	OUT (A2)	0	1	0	1	0	1	0	0	 Data output mode (serial data output) The number of bits output is equal to the number of clock cycles. See the "DO Control Data (serial data output) Structure" item for details on the meaning of the output data. 								
C C D		ХВ		B1		2 X												
		(2) CL	Norm	nal low	11												

1. Serial Data Input (IN1/IN2) tSU, tHD, tES, tEH≥0.75µs tLC<0.75µs (1) CL: Normal high

(2) CL: Normal low

2. Serial Data Output (OUT) tSU, tHD, tEL, tES, tEH≥0.75µs tDC, tDH<0.35µs (1) CL: Normal high

Note: Since the DO pin is an N-channel open-drain pin, the time for the data to change (tDC and tDH) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range
(A)	1	*	FMIN	272 to 65535	Twice the set value	10 to 160MHz
(B)	1	1	AMIN	272 to 65535	The set value	2 to 40MHz
(C)	0	0	AMIN	4 to 4095	The set value	0.5 to 10MHz

*: Don't care

Programmable Divider Calculation Examples

(1) FM, 50kHz steps (DVS=1, SNS=*: FMIN selected)

FM RF=90.0MHz (IF=+10.7MHz)

FM VCO=100.7MHz

PLL fref=25kHz (R0 to R1=1, R2 to R3=0)

100.7MHz (FMVCO)÷25kHz (fref) ÷2 (FMIN: divide-by-two prescaler) =2014→07DE (HEX)

_	[Ξ		_	[) 		_		7		_)									
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	*	1			1	1	0	0
PO	P	P2	P3	P4	P5	P6	P7	P8	Бд	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	R0	Ł	R2	R3

(2) SW 5kHz steps (DVS=0, SNS=1: AMIN high-speed side selected) SW RF=21.75MHz (IF=+450kHz)

SW VCO=22.20MHz

PLL fref=5kHz (R0=R2=0, R1=R3=1)

22.2MHz (SW VCO) ÷5kHz (fref) =4440→1158 (HEX)

_	8	3			!	5				1				1									
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
Ы	P	P2	P3	P4	P5	P6	P7	P8	6d	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	RO	Ł	R2	R3

(3) MW 10kHz steps (DVS=0, SNS=0: AMIN low-speed side selected) MW RF=1000kHz (IF=+450kHz)

MW VCO=1450kHz

PLL fref=10kHz (R0 to R2=0, R3=1)

1450kHz (MW VCO) ÷10kHz (fref)=145→091 (HEX)

						1			9	9			()									
						<u> </u>				~				<u> </u>		_							
*	*	*	*	1	0	0	0	1	0	0	1	0	0	0	0	0	0			0	0	0	1
PO	P1	P2	P3	P4	P5	P6	P7	P8	Бд	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	R0	Ł	R2	R3

IF Counter Structure

The LC72131K/KMA IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.

074	OTO	Measurement time									
GIT	GIU	Measurement time (GT) (ms)	Wait time (twu) (ms)								
0	0	4	3 to 4								
0	1	8	3 to 4								
1	0	32	7 to 8								
1	1	64	7 to 8								

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.

 $Fc = \frac{C}{GT}$ (C=Fc×GT) C: Count value (number of pulses)

IF Counter Frequency Calculation Examples

(1) When the measurement period (GT) is 32ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) =342400÷32ms=10.7MHz

				;	5			:	3			9	9			8	8			(0	
	_	-			<u> </u>								~				<u> </u>				<u> </u>	$\overline{}$
			0	1	0	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0
2	Ξ	٦L	C19	C18	C17	C16	C15	C14	C13	C12	C11	C10	60	C8	C7	C6	C5	C4	CG	C2	C1	S

(2) When the measurement period (GT) is 8ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) =3600÷8ms=450kHz

				(0			0				E			1			0				
					<u> </u>				<u> </u>				<u> </u>				<u> </u>				<u> </u>	
			0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0
12	Ξ	٦	C19	C18	C17	C16	C15	C14	C13	C12	C11	C10	60	C8	C7	C6	C5	C4	C3	C2	ū	co

IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0. The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72131K/KMA when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

FIN minimum input sensitivity standard f [MHz]									
IFS	0.4≤f<0.5	0.5≤f<8	8≤f≤12						
1: Normal mode	40mVrms (0.1 to 3mVrms)	40mVrms	40mVrms (1 to 10mVrms)						
0: Degradation mode	70mVrms (10 to 15mVrms)	70mVrms	70mVrms (30 to 40mVrms)						

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

Figure 1 Unlocked State Detection Timing

For example, if fref is 1kHz, i.e., the period is 1ms, after changing the divisor N, the system must wait at least 2ms before checking for the unlocked state.

Figure 2 Circuit Structure

Unlocked State Data Output Using Serial Data Output

In the LC72131K/KMA, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output (1) point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output (1), which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output (2)) and following outputs are valid data.

<Locked State Determination Flowchart Example>

Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data) Since the unlocked state (high=locked, low=unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin (BOI) should be at least 100k Ω . This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter. Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

Other Items

[1] Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0s
0	1	DZB	ON/ON	-0s
1	0	DZC	OFF/OFF	+0s
1	1	DZD	OFF/OFF	++0s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.

(1) Side band generation due to reference frequency leakage

(2) Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

The phase comparator compares fp to a reference frequency (fr) as shown in Figure 1. Although the characteristics of this circuit (see Figure 2) are such that the output voltage is proportional to the phase difference ϕ (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularlypriced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

[2] Notes on the FMIN, AMIN, and IFIN Pins

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100pF is desirable. In particular, if a capacitance of 1000pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can cause false detection where there is no signal due to overflow from the IF counter buffer.

[4] DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.

Pin States After the Power ON Reset [LC72131K]

Pin States After the Power ON Reset [LC72131KMA]

Application System Example [LC72131K]

Application System Example [LC72131KMA]

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC72131K-E	PDIP22 / DIP22S (300 mil) (Pb-Free)	- / -
LC72131KMA-AE	SOIC20W / MFP20J (300 mil) (Pb-Free)	2000 / Tape & Reel

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly or indirectly and specification with such angles that ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly or and filtrator to seso accisted with such unintended or unauthorized tor lease advices wi