5 V ECL Coaxial Cable Driver

Description

The MC10EL89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in Digital Video Broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver boasts a gain of approximately 40 and produces output swings twice as large as a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 V output swings allow for termination at both ends of the cable, while maintaining the required 800 mV swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard -2.0 V. All of the DC parameters are tested with a 50 Ω to -3.0 V load. The driver accepts a standard differential ECL input and can run off of the Digital Video Broadcast standard -5.0 V supply.

Features

- 375 ps Propagation Delay
- 1.6 V Output Swings
- PECL Mode Operating Range:
 - $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0$ V with $V_{EE} = -4.2$ V to -5.7 V
- Internal Input Pulldown Resistors
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

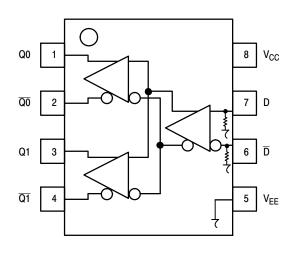


Figure 1. Logic Diagram and Pinout Assignment

ON Semiconductor®

www.onsemi.com

SOIC-8 NB D SUFFIX CASE 751-07

MARKING DIAGRAMS*

8	A	H	A	H
	ŀ	ΗEI	_89	9
		٩Ľ	ΥW	'
	0			
1	H	H	H	H

= Assembly Location

A L

Y

- W = Work Week
- M = Date Code
 - = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EL89DG	SOIC-8 (Pb-Free)	98 Units/Tube
MC10EL89DR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Table 1. PIN DESCRIPTION

PIN	Function					
D, D	ECL Data Inputs					
Q0, <u>Q0;</u> Q1, <u>Q1</u>	CL Data Outputs (1.6 V _{pp})					
V _{CC}	Positive Supply					
V _{EE}	Negative Supply					

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	50 KΩ
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model	> 2 kV > 100 V
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	31
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

MC10EL89

		-40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28		23	28		23	28	mA
V _{OH}	Output HIGH Voltage (Note 2)	3.77	3.90	4.02	3.87	3.98	4.10	3.94	4.04	4.19	V
V _{OL}	Output LOW Voltage (Note 2)	2.10	2.28	2.42	2.00	2.30	2.44	1.95	2.33	2.49	V
V _{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
VIL	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.5		4.6	2.5		4.6	2.5		4.6	V
I _{IH}	Input HIGH Current		70	150		50	150		40	150	μA
Ι _{ΙL}	Input LOW Current	0.5	50		0.5	30		0.3	25		μA

Table 4. 10EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / –0.5 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 3.0 V.

3. VIHCMR min varies 1:1 with VEE. VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V.

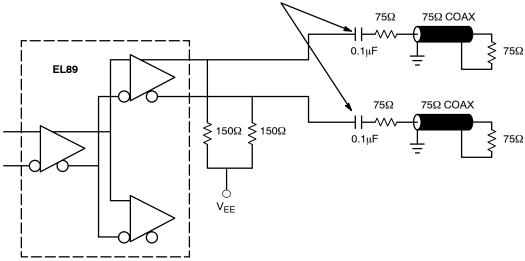
Table 5. 10EL SERIES NECL DC CHARACTERISTICS (V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 1))

		-40°C				25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current		23	28		23	28		23	28	mA	
V _{OH}	Output HIGH Voltage (Note 2)	-1.23	-1.10	-0.98	-1.13	-1.02	-0.90	-1.06	-0.96	-0.81	V	
V _{OL}	Output LOW Voltage (Note 2)	-2.90	-2.72	-2.58	-3.00	-2.70	-2.56	-3.05	-2.67	-2.51	V	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV	
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V	
I _{IH}	Input HIGH Current		70	150		50	150		20	150	μA	
۱ _{۱L}	Input LOW Current	0.5	50		0.5	30		0.3	25		μA	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / -0.5 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} - 3.0 V.

V_{IHCMR} min varies 1:1 with V_{EE}. V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V. З.


MC10EL89

		-40°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					1.5					Gb/s
t _{PLH} t _{PHL}	Propagation Delay to Output	200	340	480	260	350	440	310	400	490	ps
t _{SKEW}	Within-Device Skew		5	20		5	20		5	20	ps
t _{JITTER}	Random Clock Jitter (RMS)		5			5			5		ps
V _{PP}	Input Swing (Note 2)	150			150	400		150			mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	205	330	455	205	330	455	205	330	455	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary +0.25 V / -0.5 V.

2. $V_{PP(min)}$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of \approx 40.

DC BLOCKING CAPACITORS

Figure 2. EL89 CATV Termination Configuration

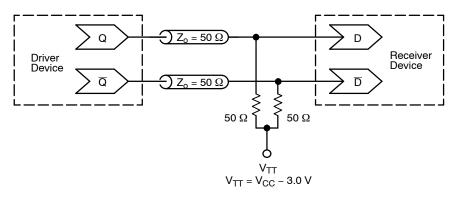
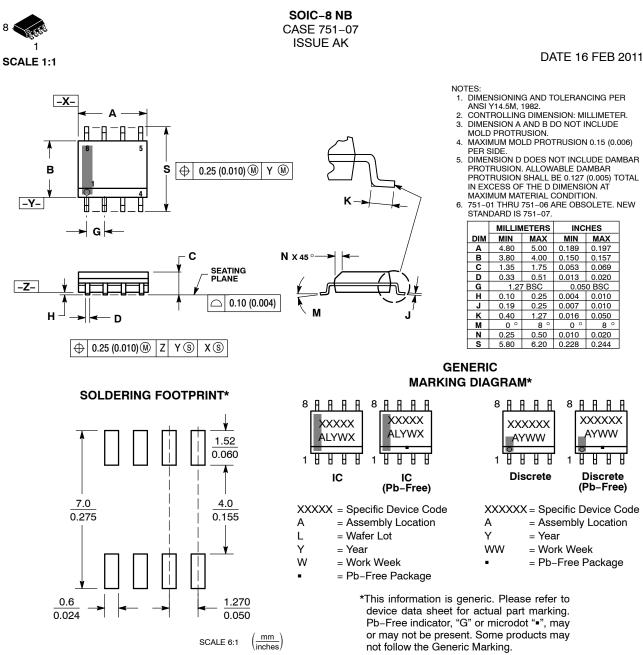


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)


MC10EL89

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques	
AN1406/D	-	Designing with PECL (ECL at +5.0 V)	
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit	
AN1504/D	-	Metastability and the ECLinPS Family	
AN1568/D	-	Interfacing Between LVDS and ECL	
AN1672/D	-	The ECL Translator Guide	
AND8001/D	-	Odd Number Counters Design	
AND8002/D	-	Marking and Date Codes	
AND8020/D	-	Termination of ECL Logic Devices	
AND8066/D	-	Interfacing with ECLinPS	
AND8090/D	-	AC Characteristics of ECL Devices	

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.						

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2				

onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>