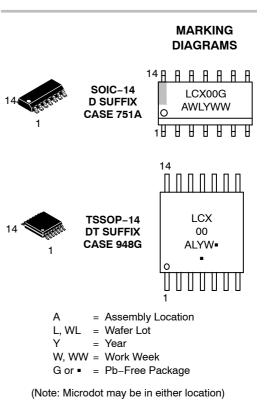
Low-Voltage CMOS Quad 2-Input NAND Gate

With 5 V-Tolerant Inputs

The MC74LCX00 is a high performance, quad 2–input NAND gate operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX00 inputs to be safely driven from 5 V devices.

Current drive capability is 24 mA at the outputs.


Features

- Designed for 2.3 V to 3.6 V V_{CC} Operation
- 5 V Tolerant Inputs Interface Capability With 5 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

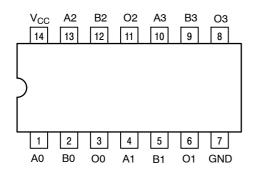


Figure 1. Pinout: 14-lead (Top View)

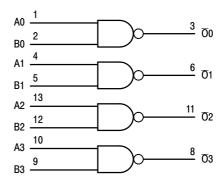


Figure 2. Logic Diagram

PIN NAMES

Pins	Function
An, Bn	Data Inputs
On	Outputs

|--|

Inp	outs	Outputs
An	Bn	On
L	L	Н
L	н	н
н	L	н
н	н	L

H = High Voltage Level

L = Low Voltage Level

For $I_{\mbox{\scriptsize CC}}$ reasons, DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{\rm l} \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Туре	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage		0		5.5	V
V _O	Output Voltage	(HIGH or LOW State) (3–State)	0		V _{CC}	V
I _{OH}	HIGH Level Output Current	$V_{CC} = 3.0 V - 3.6 V$ $V_{CC} = 2.7 V - 3.0 V$ $V_{CC} = 2.3 V - 2.7 V$			-24 -12 -8	mA
I _{OL}	LOW Level Output Current	$V_{CC} = 3.0 V - 3.6 V$ $V_{CC} = 2.7 V - 3.0 V$ $V_{CC} = 2.3 V - 2.7 V$			+24 +12 +8	mA
T _A	Operating Free–Air Temperature		-40		+85	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate, V _{IN} from	n 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = −40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2)	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 2.7 \text{ V}$	1.7		V
		$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$	2.0		1
V _{IL}	LOW Level Input Voltage (Note 2)	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 2.7 \text{ V}$		0.7	V
		$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$		0.8	
V _{OH}	HIGH Level Output Voltage	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}; \text{ I}_{\text{OH}} = -100 \mu\text{A}$	V _{CC} – 0.2		V
		V _{CC} = 2.3 V; I _{OH} = -8 mA	1.8		
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{OH} = -12 \text{ mA}$	2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		1
V _{OL}	LOW Level Output Voltage	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}; \text{ I}_{\text{OL}} = 100 \ \mu\text{A}$		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS (t_R = t_F = 2.5 ns; R_L = 500 Ω)

				Limits					
				$T_A = -40^{\circ}C$ to $+85^{\circ}C$					
			V _{CC} = 3.3	$V_{CC} = 3.3 V \pm 0.3 V$ $V_{CC} = 2.7 V$ $V_{CC} = 2.5 V \pm 0.2 V$					
			C _L = 5	50 pF	C _L = \$	50 pF	C _L = 3	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Unit
t _{PLH}	Propagation Delay Time	1	1.5	5.5	1.5	6.2	1.5	6.6	ns
t _{PHL}	Input-to-Output		1.5	5.5	1.5	6.2	1.5	6.6	
toshl	Output-to-Output Skew			1.0					ns
t _{OSLH}	(Note 3)			1.0					

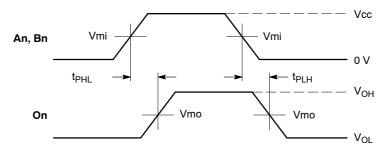
 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V
	(Note 4)	V_{CC} = 2.5 V, C_L = 30 pF, V_{IH} = 2.5 V, V_{IL} = 0 V		0.6		V
V _{OLV}	Dynamic LOW Valley Voltage	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		-0.8		V
	(Note 4)	V_{CC} = 2.5 V, C_L = 30 pF, V_{IH} = 2.5 V, V_{IL} = 0 V		-0.6		V

4. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

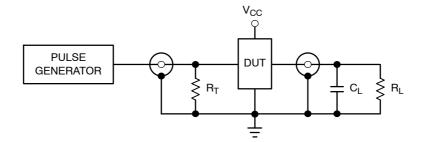

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX00DG	SOIC-14 (Pb-Free)	55 Units / Rail
MC74LCX00DR2G	SOIC-14 (Pb-Free)	2500 Tape & Reel
MC74LCX00DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LCX00DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel
NLV74LCX00DTR2G*	TSSOP-14 (Pb-Free)	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.



WAVEFORM 1 - PROPAGATION DELAYS

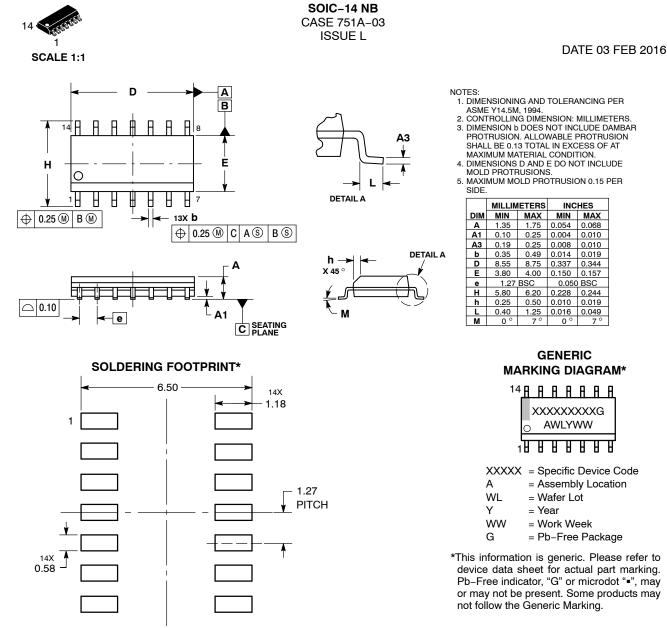
 $t_{B} = t_{F} = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_{W} = 500$ ns

	Vcc				
Symbol	3.3 V <u>+</u> 0.3 V	2.7 V	2.5 V <u>+</u> 0.2 V		
Vmi	1.5 V	1.5 V	Vcc/2		
Vmo	1.5 V	1.5 V	Vcc/2		

 $C_L = 50 \text{ pF}$ at $V_{CC} = 3.3 \pm 0.3 \text{ V}$ or equivalent (includes jig and probe capacitance) $C_L = 30 \text{ pF}$ at $V_{CC} = 2.5 \pm 0.2 \text{ V}$ or equivalent (includes jig and probe capacitance) $R_L = R_1 = 500 \Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit


DUSEU

0.068

0.019

0.344

0.244

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>