

3-to-8 Line Decoder MC74VHCT138A

The MC74VHCT138A is an advanced high speed CMOS 3-to-8 decoder fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

When the device is enabled, three Binary Select inputs (A0 - A2) determine which one of the outputs $(\overline{Y0} - \overline{Y7})$ will go Low. When enable input E3 is held Low or either $\overline{E2}$ or $\overline{E1}$ is held High, decoding function is inhibited and all outputs go high. E3, $\overline{E2}$, and $\overline{E1}$ inputs are provided to ease cascade connection and for use as an address decoder for memory systems.

The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because they have full 5.0 V CMOS level output swings.

The VHCT138A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when $V_{\rm CC}$ = 0 V. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $t_{PD} = 7.6 \text{ ns}$ (Typ) at $V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 4.5 V to 5.5 V Operating Range
- Pin and Function Compatible with Other Standard Logic Families

1

- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

- Chip Complexity: 122 FETs or 30.5 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAM

A = Assembly Location

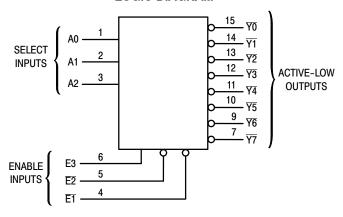
WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package

PIN ASSIGNMENT

(Note: Microdot may be in either location)

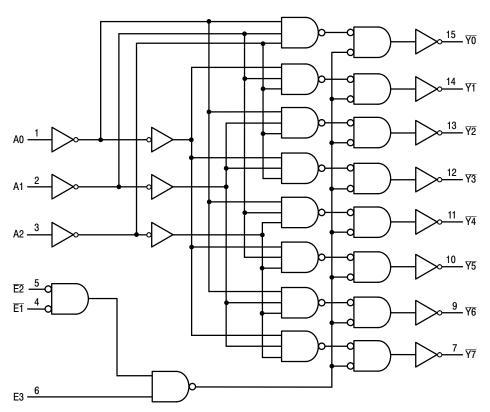
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

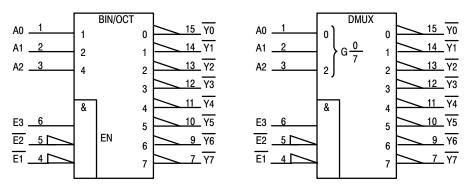

FUNCTION TABLE

	Inputs					Outputs							
E3	E2	E1	A2	A 1	Α0	Y0	Y 1	Y2	Y3	Y 4	Y5	Y6	Y 7
Х	Х	Н	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Χ	X	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	Χ	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Η	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Η	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high level (steady state); L = low level (steady state);


X = don't care

LOGIC DIAGRAM



MC74VHCT138A

EXPANDED LOGIC DIAGRAM

IEC LOGIC DIAGRAM

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage	- 0.5 to + 7.0	V	
V _{in}	DC Input Voltage	- 0.5 to + 7.0	V	
V _{out}	DC Output Voltage V _{Ci} High or Low S	c = 0 State	- 0.5 to + 7.0 - 0.5 to V _{CC} + 0.5	V
I _{IK}	Input Diode Current		- 20	mA
lok	Output Diode Current (V _{OUT} < GND; V _{OUT} > V _C	c)	±[2 0	mA
l _{out}	DC Output Current, per Pin		±[2 5	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±[7 5	mA
P _D	Power Dissipation in Still Air, SOIC Packa TSSOP Pack		500 450	mW
T _{stg}	Storage Temperature		- 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

†Derating – SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	3.0	5.5	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage V _{CC} = 0 High or Low State	0	5.5 V _{CC}	V
T _A	Operating Temperature	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time V _{CC} =5.0V ±0.5V	0	20	ns/V

The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

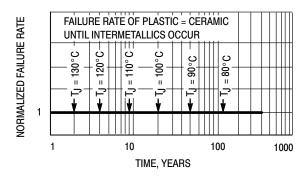
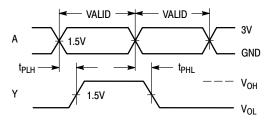


Figure 1. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

			v _{cc}	Т	A = 25°	С	T _A ≤	85°C	T _A ≤	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		3.0 4.5 5.5	1.4 2.0 2.0			1.4 2.0 2.0		1.4 2.0 2.0		V
V _{IL}	Maximum Low-Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
	$V_{IN} = V_{IH}$ or V_{IL}	$V_{IN} = V_{IH}$ or V_{IL} $I_{OH} = -4$ mA $I_{OH} = -8$ mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	$V_{IN} = V_{IH}$ or V_{IL}	$V_{IN} = V_{IH}$ or V_{IL} $I_{OL} = 4$ mA $I_{OL} = 8$ mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			±[0.1		±∏1.0		±∏1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5			4.0		40.0		40.0	μΑ
I _{CCT}	Quiescent Supply Current	V _{IN} = 3.4 V	5.5			1.35		1.50		1.50	mA
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0.0			0.5		5.0		5.0	μА


AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		T _A = ≤ 85°C		$T_A \le 125^{\circ}C$			
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Maximum Propagation Delay, Input A to Y	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15pF C _L = 50pF		9.5 10.8	14.5 15.5	1.0 1.0	16.0 17.0	1.0 1.0	16.0 17.0	ns
		$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$		7.6 8.1	10.4 11.4	1.0 1.0	12.0 13.0	1.0 1.0	12.0 13.0	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input E3 to Y	$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$		9.7 9.5	13.0 14.0	1.0 1.0	14.5 15.5	1.0 1.0	14.5 15.5	ns
		$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$		6.6 7.1	9.1 10.1	1.0 1.0	10.5 11.5	1.0 1.0	10.5 11.5	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input E1 or E2 to Y	$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$		10.1 9.9	14.0 15.0	1.0 1.0	15.5 16.5	1.0 1.0	15.5 16.5	ns
		V _{CC} = 5.0 ± 0.5V	C _L = 15pF C _L = 50pF		7.0 7.5	9.6 10.6	1.0 1.0	11.0 12.0	1.0 1.0	11.0 12.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF

		Typical @ 25°C, V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance (Note 1)	49	pF

^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

SWITCHING WAVEFORMS

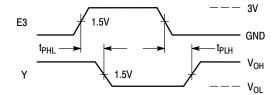


Figure 2.

Figure 3.

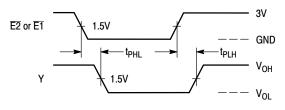
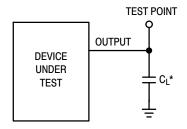



Figure 4.

^{*}Includes all probe and jig capacitance

Figure 5. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC74VHCT138ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel		
MC74VHCT138ADTRG	TSSOP-16*	2500 Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>
*This package is inherently Pb-Free.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales