

Complementary Darlington Power Transistors

DPAK For Surface Mount Applications

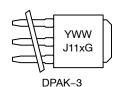
MJD112 (NPN), MJD117 (PNP)

Designed for general purpose power and switching such as output or driver stages in applications such as switching regulators, converters, and power amplifiers.

Features

- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("-1" Suffix)
- Electrically Similar to Popular TIP31 and TIP32 Series
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant*

SILICON POWER TRANSISTORS 2 AMPERES 100 VOLTS, 20 WATTS



DPAK CASE 369C

DPAK-3 CASE 369D

MARKING DIAGRAMS

A = Assembly Location

Y = Year WW = Work Week x = 2 or 7

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current Continuous Peak	lc	2 4	Adc
Base Current	I _B	50	mAdc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Total Power Dissipation (Note1) @ T _A = 25°C Derate above 25°C	P _D	1.75 0.014	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	6.25	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ heta JA}$	71.4	°C/W

^{1.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	-		I	
Collector–Emitter Sustaining Voltage (Note 2) $(I_C = 30 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	100	-	Vdc
Collector Cutoff Current (V _{CE} = 50 Vdc, I _B = 0)	I _{CEO}	-	20	μAdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)	I _{CBO}	-	20	μAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)	I _{EBO}	_	2	mAdc
Collector-Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)	I _{CBO}	-	10	μAdc
Emitter-Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)	I _{EBO}	-	2	mAdc
ON CHARACTERISTICS	,		1	1
DC Current Gain	h _{FE}	500 1000 200	_ 12,000 _	_
Collector–Emitter Saturation Voltage ($I_C = 2$ Adc, $I_B = 8$ mAdc) ($I_C = 4$ Adc, $I_B = 40$ mAdc)	V _{CE(sat)}	- -	2 3	Vdc
Base-Emitter Saturation Voltage (I _C = 4 Adc, I _B = 40 mAdc)	V _{BE(sat)}	_	4	Vdc
Base-Emitter On Voltage (I _C = 2 Adc, V _{CE} = 3 Vdc)	V _{BE(on)}	_	2.8	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain - Bandwidth Product (I _C = 0.75 Adc, V _{CE} = 10 Vdc, f = 1 MHz)	f _T	25	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ Mhz})$ MJD117, NJVMJD117T4G MJD112, NJVMJD112G, NJVMJD112T4G	C _{ob}	-	200 100	pF

^{2.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. *These ratings are applicable when surface mounted on the minimum pad sizes recommended.

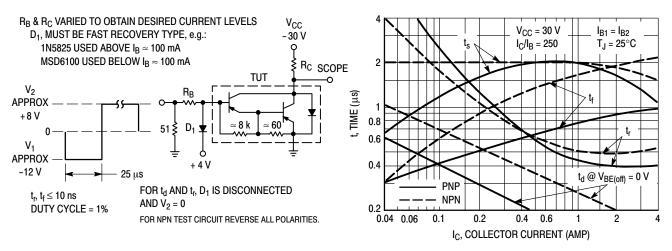


Figure 1. Switching Times Test Circuit

Figure 2. Switching Times

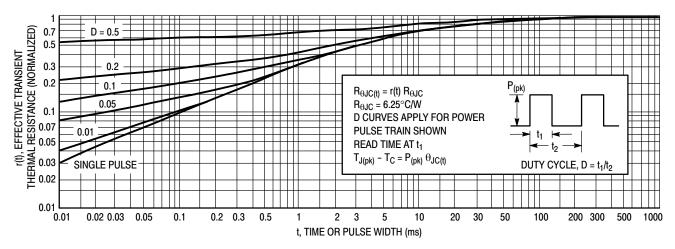


Figure 3. Thermal Response

ACTIVE-REGION SAFE-OPERATING AREA

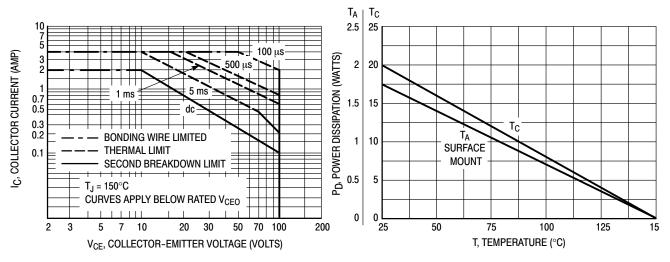
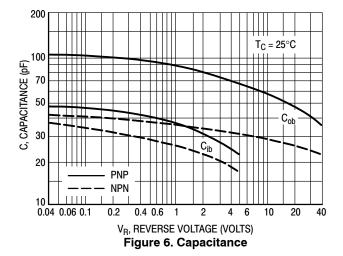



Figure 4. Maximum Rated Forward Biased Safe Operating Area

Figure 5. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 5 and 6 is based on $T_{J(pk)}$ = 150°C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)}$ < 150°C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

TYPICAL ELECTRICAL CHARACTERISTICS

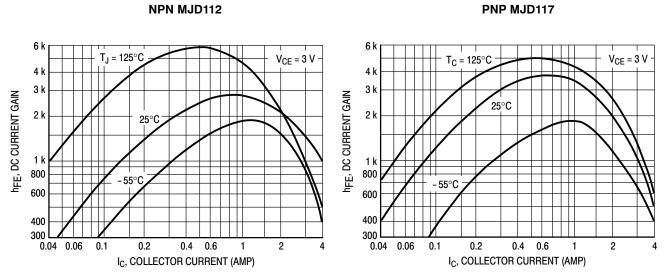


Figure 7. DC Current Gain

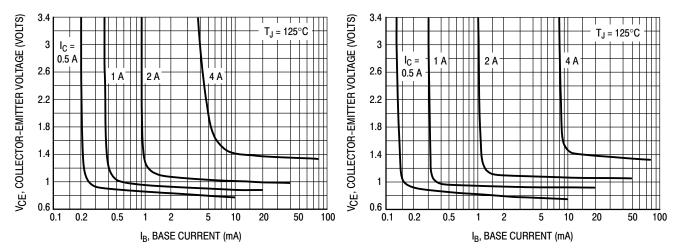


Figure 8. Collector Saturation Region

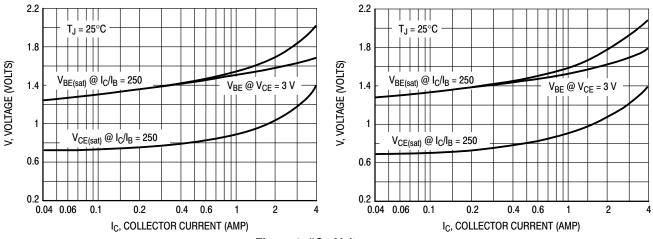


Figure 9. "On Voltages

NPN MJD112 PNP MJD117

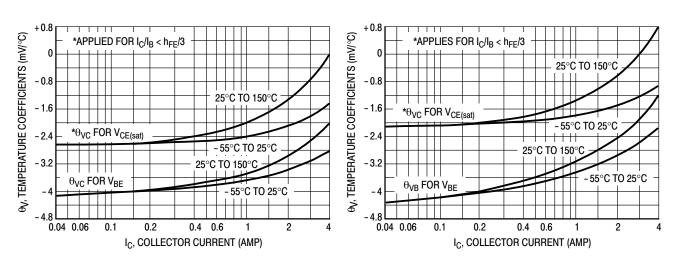


Figure 10. Temperature Coefficients

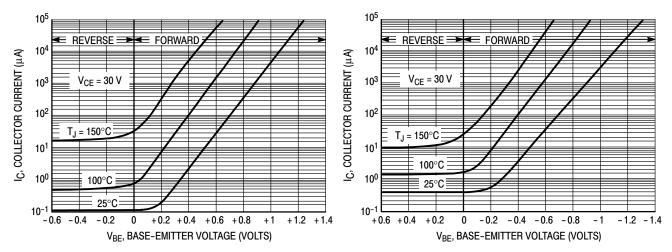


Figure 11. Collector Cut-Off Region

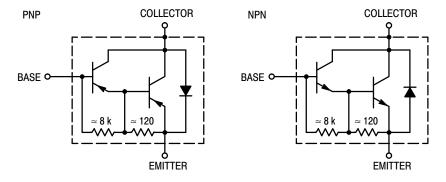
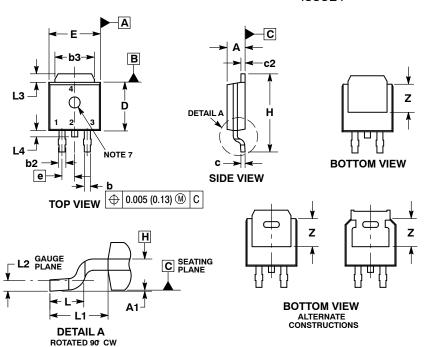


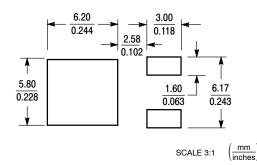
Figure 12. Darlington Schematic

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]	
MJD112G	DPAK (Pb-Free)	369C	75 Units / Rail	
NJVMJD112G*	DPAK (Pb-Free)	369C	75 Units / Rail	
MJD112-1G	DPAK-3 (Pb-Free)	369D	75 Units / Rail	
MJD112RLG	DPAK (Pb-Free)	369C	1,800 Tape & Reel	
MJD112T4G	DPAK (Pb-Free)	369C	2,500 Tape & Reel	
NJVMJD112T4G*	DPAK (Pb-Free)	369C	2,500 Tape & Reel	
MJD117G	DPAK (Pb-Free)	369C	75 Units / Rail	
MJD117-1G	DPAK-3 (Pb-Free)	369D	75 Units / Rail	
MJD117RLG	DPAK (Pb-Free)	369C	1,800 Tape & Reel	
MJD117T4G	DPAK (Pb-Free)	369C	2,500 Tape & Reel	
NJVMJD117T4G*	DPAK (Pb-Free)	369C	2,500 Tape & Reel	


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP

Capable.


PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

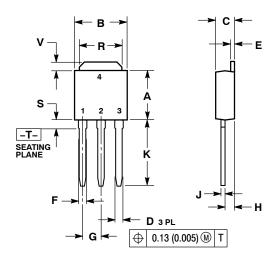
CASE 369C ISSUE F

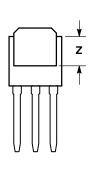
SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 DATIMES AND B ADE DETERMINED AT DATIM.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM
- PLANE H.
 7. OPTIONAL MOLD FEATURE.


	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90	REF	
L2	0.020 BSC		0.51	0.51 BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		


- STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

 - 4. COLLECTOR

PACKAGE DIMENSIONS

IPAK CASE 369D ISSUE C

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 1:

PIN 1. BASE

2. COLLECTOR

3 FMITTER

4. COLLECTOR

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative