## Complementary NPN-PNP Silicon Power Bipolar Transistors

The MJW3281A and MJW1302A are PowerBase <sup>™</sup> power transistors for high power audio, disk head positioners and other linear applications.

#### **Features**

- Designed for 100 W Audio Frequency
- Gain Complementary:

Gain Linearity from 100 mA to 7 A  $h_{FE} = 45$  (Min) @  $I_C = 8$  A

- Low Harmonic Distortion
- High Safe Operation Area 1 A/100 V @ 1 Second
- High f<sub>T</sub> 30 MHz Typical
- Pb-Free Packages are Available\*

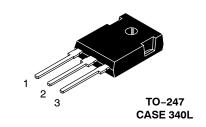
#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| •                                                                    |                                   | •           |           |
|----------------------------------------------------------------------|-----------------------------------|-------------|-----------|
| Rating                                                               | Symbol                            | Value       | Unit      |
| Collector-Emitter Voltage                                            | $V_{CEO}$                         | 230         | Vdc       |
| Collector-Base Voltage                                               | V <sub>CBO</sub>                  | 230         | Vdc       |
| Emitter-Base Voltage                                                 | V <sub>EBO</sub>                  | 5.0         | Vdc       |
| Collector-Emitter Voltage - 1.5 V                                    | V <sub>CEX</sub>                  | 230         | Vdc       |
| Collector Current - Continuous - Peak (Note 1)                       | I <sub>C</sub>                    | 15<br>25    | Adc       |
| Base Current - Continuous                                            | Ι <sub>Β</sub>                    | 1.5         | Adc       |
| Total Power Dissipation @ T <sub>C</sub> = 25°C<br>Derate Above 25°C | P <sub>D</sub>                    | 200<br>1.43 | W<br>W/°C |
| Operating and Storage Junction<br>Temperature Range                  | T <sub>J</sub> , T <sub>stg</sub> | -65 to +150 | °C        |

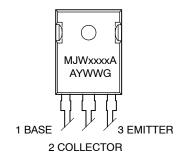
#### THERMAL CHARACTERISTICS

| Characteristic                          | Symbol          | Max   | Unit |
|-----------------------------------------|-----------------|-------|------|
| Thermal Resistance, Junction-to-Case    | $R_{\theta JC}$ | 0.625 | °C/W |
| Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 40    | °C/W |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle < 10%.




#### ON Semiconductor®

http://onsemi.com

## 15 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 230 VOLTS 200 WATTS



#### **MARKING DIAGRAM**



xxxx = 3281 or 1302 A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

#### ORDERING INFORMATION

| Device    | Package             | Shipping      |
|-----------|---------------------|---------------|
| MJW3281A  | TO-247              | 30 Units/Rail |
| MJW3281AG | TO-247<br>(Pb-Free) | 30 Units/Rail |
| MJW1302A  | TO-247              | 30 Units/Rail |
| MJW1302AG | TO-247<br>(Pb-Free) | 30 Units/Rail |

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                               | Symbol                | Min                                    | Тур                                  | Max                                    | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|--------------------------------------|----------------------------------------|------|
| OFF CHARACTERISTICS                                                                                                                                          |                       | •                                      |                                      |                                        | •    |
| Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$                                                                                     | V <sub>CEO(sus)</sub> | 230                                    | _                                    | _                                      | Vdc  |
| Collector Cutoff Current (V <sub>CB</sub> = 230 Vdc, I <sub>E</sub> = 0)                                                                                     | I <sub>CBO</sub>      | _                                      | _                                    | 50                                     | μAdc |
| Emitter Cutoff Current (V <sub>EB</sub> = 5 Vdc, I <sub>C</sub> = 0)                                                                                         | I <sub>EBO</sub>      | -                                      | -                                    | 5                                      | μAdc |
| SECOND BREAKDOWN                                                                                                                                             |                       |                                        |                                      |                                        |      |
| Second Breakdown Collector with Base Forward Biased (V <sub>CE</sub> = 50 Vdc, t = 1 s (non-repetitive) (V <sub>CE</sub> = 100 Vdc, t = 1 s (non-repetitive) | I <sub>S/b</sub>      | 4                                      | _<br>_                               | -<br>-                                 | Adc  |
| ON CHARACTERISTICS                                                                                                                                           |                       | •                                      |                                      |                                        | •    |
| DC Current Gain                                                                                                                                              | h <sub>FE</sub>       | 50<br>50<br>50<br>50<br>50<br>50<br>45 | 125<br>-<br>-<br>-<br>115<br>-<br>35 | 200<br>200<br>200<br>200<br>200<br>200 | -    |
| Collector–Emitter Saturation Voltage $(I_C = 10 \text{ Adc}, I_B = 1 \text{ Adc})$                                                                           | V <sub>CE(sat)</sub>  | -                                      | 0.4                                  | 2                                      | Vdc  |
| Base-Emitter On Voltage<br>(I <sub>C</sub> = 8 Adc, V <sub>CE</sub> = 5 Vdc)                                                                                 | V <sub>BE(on)</sub>   | _                                      | _                                    | 2                                      | Vdc  |
| DYNAMIC CHARACTERISTICS                                                                                                                                      | •                     |                                        | •                                    |                                        |      |
| Current-Gain - Bandwidth Product<br>(I <sub>C</sub> = 1 Adc, V <sub>CE</sub> = 5 Vdc, f <sub>test</sub> = 1 MHz)                                             | f <sub>T</sub>        | _                                      | 30                                   | -                                      | MHz  |
| Output Capacitance ( $V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz}$ )                                                                          | C <sub>ob</sub>       | -                                      | -                                    | 600                                    | pF   |

#### **TYPICAL CHARACTERISTICS**

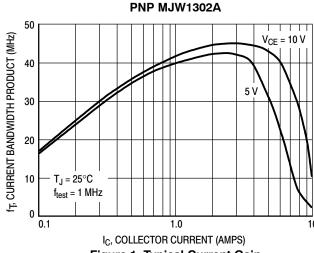



Figure 1. Typical Current Gain Bandwidth Product

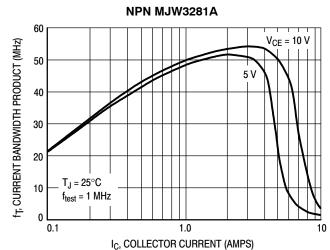



Figure 2. Typical Current Gain Bandwidth Product

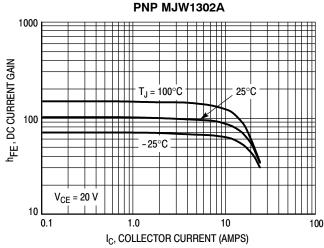



Figure 3. DC Current Gain, V<sub>CE</sub> = 20 V

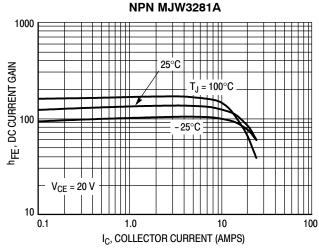
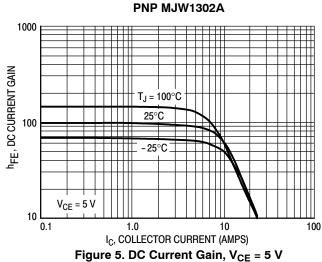




Figure 4. DC Current Gain, V<sub>CE</sub> = 20 V



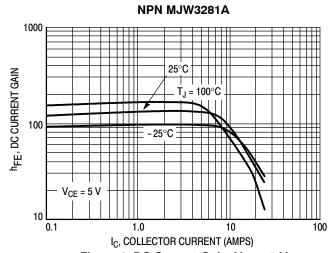
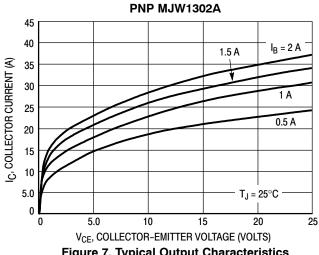
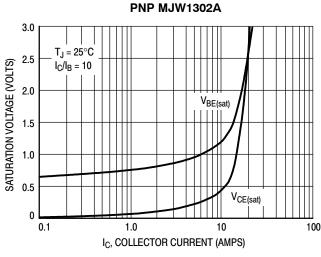




Figure 6. DC Current Gain, V<sub>CE</sub> = 5 V


#### **TYPICAL CHARACTERISTICS**



NPN MJW3281A 45  $I_B = 2 A$ 1.5 A 40 35 IC, COLLECTOR CURRENT (A) 1 A 30 0.5 A 25 20 15 10  $T_J = 25^{\circ}C$ 5.0 0 20 0 5.0 10 15 V<sub>CE</sub>, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 7. Typical Output Characteristics

Figure 8. Typical Output Characteristics



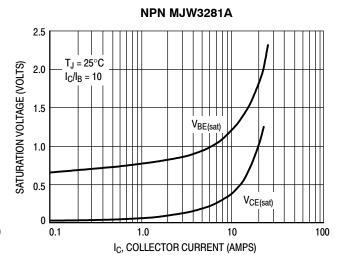
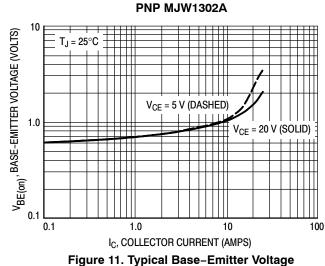




Figure 9. Typical Saturation Voltages

Figure 10. Typical Saturation Voltages



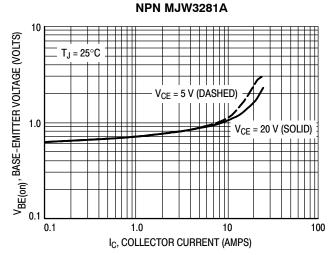



Figure 12. Typical Base-Emitter Voltage

# PNP MJW1302A 100 100 mSec 1 Sec 1 S

Figure 13. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate  $I_C$  –  $V_{CE}$  limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.



Figure 14. Active Region Safe Operating Area

The data of Figures 13 and 14 is based on  $T_{J(pk)} = 150^{\circ} C$ ;  $T_C$  is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

#### **TYPICAL CHARACTERISTICS**

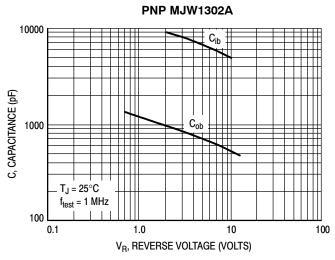



Figure 15. MJW1302A Typical Capacitance

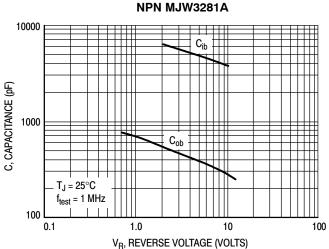
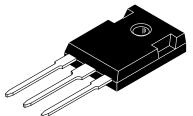




Figure 16. MJW3281A Typical Capacitance



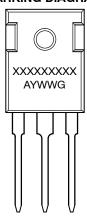


3X D

**⊕** 0.25 (0.010)**W** Y AS

TO-247 CASE 340L **ISSUE G** 

**DATE 06 OCT 2021** 


#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

|     | MILLIMETERS |       | INC   | INCHES    |  |
|-----|-------------|-------|-------|-----------|--|
| DIM | MIN.        | MAX.  | MIN.  | MAX.      |  |
| Α   | 20.32       | 21.08 | 0.800 | 0.830     |  |
| В   | 15.75       | 16.26 | 0.620 | 0.640     |  |
| С   | 4.70        | 5.30  | 0.185 | 0.209     |  |
| D   | 1.00        | 1.40  | 0.040 | 0.055     |  |
| E   | 1.90        | 2.60  | 0.075 | 0.102     |  |
| F   | 1.65        | 2.13  | 0.065 | 0.084     |  |
| G   | 5.45 BSC    |       | 0.215 | 0.215 BSC |  |
| Н   | 1.50        | 2.49  | 0.059 | 0.098     |  |
| J   | 0.40        | 0.80  | 0.016 | 0.031     |  |
| К   | 19.81       | 20.83 | 0.780 | 0.820     |  |
| L   | 5.40        | 6.20  | 0.212 | 0.244     |  |
| N   | 4.32        | 5.49  | 0.170 | 0.216     |  |
| Р   |             | 4.50  |       | 0.177     |  |
| Q   | 3.55        | 3.65  | 0.140 | 0.144     |  |
| U   | 6.15 BSC    |       | 0.242 | 0.242 BSC |  |
| W   | 2.87        | 3.12  | 0.113 | 0.123     |  |

### SCALE 1:1 Α øΩ 2X F

#### **GENERIC MARKING DIAGRAM\***



| STYLE 1: |        |
|----------|--------|
| PIN 1.   | GATE   |
| 2.       | DRAIN  |
| 3.       | SOURCE |
| 4.       | DRAIN  |

PIN 1. CATHODE

STYLE 5:

STYLE 2: PIN 1. ANODE 2. CATHODE (S) 3. ANODE 2 4. CATHODES (S)

STYLE 6:

STYLE 3: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 4: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

XXXXX = Specific Device Code Α = Assembly Location

Υ = Year WW = Work Week = Pb-Free Package

PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2 2. ANODE \*This information is generic. Please refer to 3. GATE 4. ANODE 3. GATE 4. MAIN TERMINAL 2 device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB15080C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TO-247      |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales