

3.3 V LVTTL/LVCMOS 2:1 MUX to 4 LVPECL Differential Clock Fanout Buffer Outputs with Clock Enable and Clock Select

NB3N853501E

Description

The NB3N853501E is a pure 3.3 V supply 2:1:4 clock distribution fanout buffer. Input MUX selects one of two LVCMOS/LVTTL CLK lines by the CLK_SEL pin (HIGH for CLK1, LOW for CLK0) using LVCMOS/LVTTL levels. Outputs are LVPECL levels and are synchronously enabled by CLK_EN using LVCMOS/LVTTL levels (HIGH to enable outputs, LOW to disable output).

Features

- Four differential LVPECL Outputs
- Two Selectable LVCMOS/LVTTL CLOCK Inputs
- Up to 266 MHz Clock Operation
- Output to Output Skew: 30 ps (Max.)
- Device to Device Skew 250 ps (Max.)
- Propagation Delay 2.0 ns (Max.)
- Operating range: $V_{CC} = 3.3 \pm 5\% \text{ V}(3.135 \text{ to } 3.465 \text{ V})$
- Additive Phase Jitter, RMS: 62 fs (Typ)
- Synchronous Clock Enable Control
- Industrial Temp. Range (-40°C to 85°C)
- Pb-Free TSSOP20 Package
- These are Pb-Free Devices

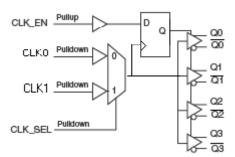


Figure 1. Simplified Logic Diagram

1

MARKING DIAGRAM

TSSOP-20 DT SUFFIX CASE 948E

A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

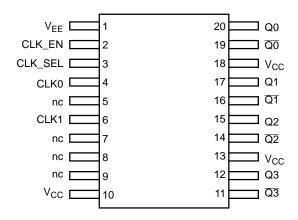


Figure 2. Pinout Diagram (Top View)

Table 1. PIN DESCRIPTION

Number	Name	I/O	Open Default	Description
1	V _{EE}			Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation.
2	CLK_EN	LVCMOS / LVTTL	Pullup	Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, Qx LOW)
3	CLK_SEL	LVCMOS / LVTTL	Pulldown	Clock Input Select (HIGH selects CLK1, LOW selects CLK0 input)
4	CLK0	LVCMOS / LVTTL	Pulldown	Clock 0 Input. Float open when unused.
5, 6, 8, 9	nc			No Connect
6	CLK1	LVCMOS / LVTTL	Pulldown	Clock 1 Input. Float open when unused.
10, 13, 18	V _{CC}			Positive Power Supply pins must be externally connected to power supply to guarantee proper operation.
11, 14, 16, 19	Q[3:0]	LVPECL		Invert Differential Outputs
12, 15, 16, 20	Q[3:0]	LVPECL		True Differential Outputs

Table 2. FUNCTIONS

Inputs			Outputs			
CLK_EN	CLK_SEL	Input Function	Output Function	Qx	Qx	
0	0	CLK0 input selected	Disabled	LOW	HIGH	
0	1	CLK1 Input Selected	Disabled	LOW	HIGH	
1	0	CLK0 input selected	Enabled	CLK0	Invert of CLK1	
1	1	CLK1 Input Selected	Enabled	CLK1	Invert of CLK1	

^{1.} After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3.

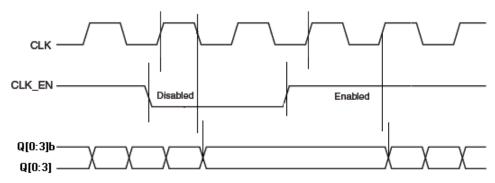


Figure 3. CLK_EN TIMING DIAGRAM

Table 3. ATTRIBUTES (Note 2)

Characteristic	Value			
Internal Input Pullup Resistor	50 kΩ			
Internal Input Pulldown Resistor	50 kΩ			
ESD Protection	> 2 kV > 200 V			
Moisture Sensitivity, Indefinite Time Ou	Level 1			
Flammability Rating Oxygen Index	UL 94 V-0 @ 0.125 in 28 to 34			
Transistor Count	317 Devices			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test				

^{2.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Supply Voltage			4.6	V
V _{in}	Input Voltage			$-0.5 \le V_{I} \le V_{CC} + 0.5$	V
C _{in}	Input Capacitance			4	pF
I _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range, Industrial			$-40 \text{ to } \leq +85$	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-20	140 50	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm	Single-Layer PCB (700 mm ² , 2 oz)	128	°C/W
		200 lfpm	Multi-Layer PCB (700 mm ² , 2 oz)	94	
θЈС	Thermal Resistance (Junction-to-Case)	(Note 4)	TSSOP-20	23 to 41	°C/W
T _{sol}	Wave Solder			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

^{3.} Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.

^{4.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 5. DC CHARACTERISTICS $V_{CC} = 3.3 \pm 5\%$ V (3.135 to 3.465 V), GND = 0 V, $T_A = -40^{\circ}C$ to +85°C (Note 5)

Symbol	Characteristic			Тур	Max	Unit
I _{EE}	Power Supply Current				50	mA
V _{IH}	Input HIGH Voltage		2		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage	CLK0 CLK1 CLK_EN CLK_SEL	-0.3 -0.3		1.3 0.8	V
I _{IH}	Input High Current (V _{CC} = V _{in} = 3.456 V)	CLKx, CLK_SEL CLK_EN			150 5	μΑ
I _{IL}	Input LOW Current (V _{CC} = 3.456 V; V _{in} = GND)	CLKx, CLK_SEL CLK_EN	-5 -150			μΑ
V _{OH}	Output HIGH Voltage		V _{CC} – 1.4		V _{CC} - 0.9	V
V _{OL}	Output LOW Voltage		V _{CC} - 2.0		V _{CC} – 1.7	V
VOUT _{SWING}	Output Voltage Swing (peak-to-peak)		0.6		1.0	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

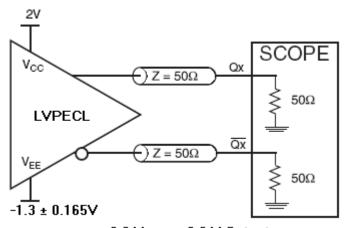
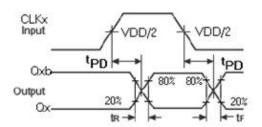
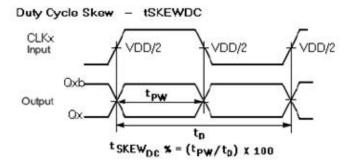

^{5.} Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4. Input levels of 0.8 V and 2.4 V unless stated otherwise.

Table 6. AC CHARACTERISTICS $V_{CC} = 3.3 \pm 5\% \text{ V}$ (3.135 to 3.465 V), GND = 0 V, $T_A = -40^{\circ}\text{C}$ to +85°C (Note 6)

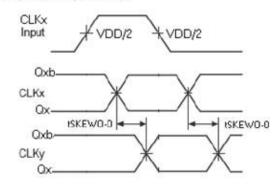
Symbol	Characteristic		Тур	Max	Unit
F _{MAX}	Maximum Operating Frequency			266	MHz
t _{PD}	Propagation Delay			2.0	ns
tSKEW _{DC}	Duty Cycle Skew same path similar conditions at 50 MHz		50	52	%
tSKEW _{O-O}	Output to Output Skew Within A Device			30	ps
tSKEW _{D-D}	Device-to-Device Skew similar path and conditions			250	ps
t _{JIT}	Additive Phase Noise Jitter (RMS) @ 155.52 MHz (Integrated from 12 kHz to 20 MHz) See Figure 6.		0.062		ps
t _r /t _f	Output rise and fall times @ 266 MHz (20% and 80% points)	240		700	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.


^{6.} Outputs terminated 50 Ω to V_{CC} – 2.0 V, see Figure 4. Input levels of 0.8 V and 2.4 V unless stated otherwise. Measured from Input Midpoint $(V_{DD}/2)$ to differential Output crosspoints, see Figure 5.



3.3 V core, 3.3 V Output


Figure 4. Typical Test Setup and Termination for Evaluation. The V_{CC} of 2.0 V and V_{EE} of -1.3 ± 0.165 V Split supply allows a direct connection to an oscilloscope 50 Ω impedance input module. Also reference AND8020.

Propagation Delay

Output to Output Skew

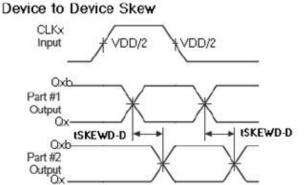


Figure 5. AC Measurement Reference

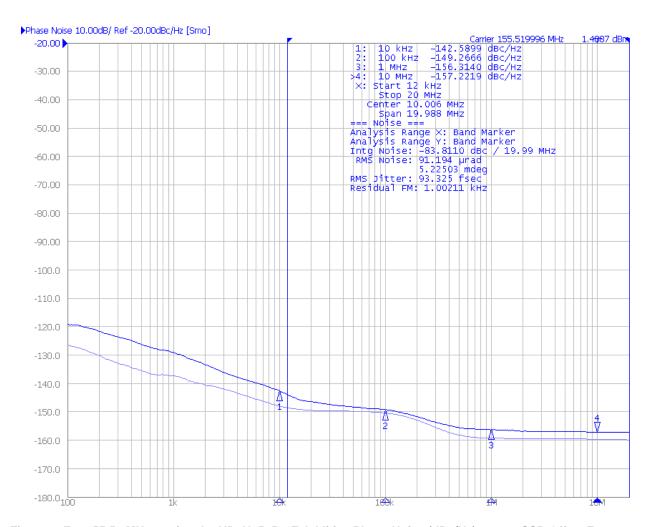


Figure 6. For 155.52 MHz carrier, the NB3N853501E Additive Phase Noise (dBc/Hz) verses SSB Offset Frequency (Hz) Integrated Jitter from 12 kHz to 20 MHz (Upper Heavy Line) is 93.3 fs RMS. The E8663B Source Generator Additive Phase Noise (Lower Light Line) is 70.1 fs RMS. Where t_{JIT} = √(t_{JIToutput})² − (t_{JITinput})² = 61.6 fs

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N853501EDTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales