onsemi

Operational Amplifiers, High Slew Rate, Low Voltage, Rail-to-Rail Output

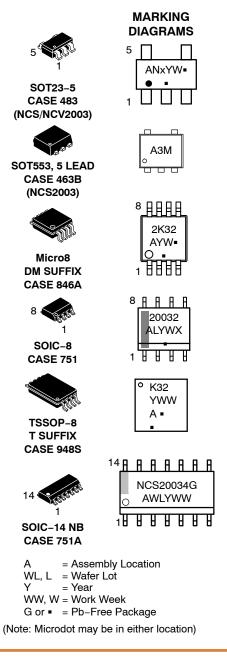
NCS2003/A, NCV2003, NCS20032, NCV20032, NCS20034, NCV20034

The NCS2003 family of op amps features high slew rate, low voltage operation with rail-to-rail output drive capability. The 1.8 V operation allows high performance operation in low voltage, low power applications. The fast slew rate and wide unity-gain bandwidth (5 MHz at 1.8 V) make these op amps suited for high speed applications. The low input offset voltage (4 mV max) allows the op amp to be used for current shunt monitoring. Additional features include no output phase reversal with overdriven inputs and ultra low input bias current of 1 pA.

The NCS2003 family is the ideal solution for a wide range of applications and products. The single channel NCS2003, dual channel NCS20032, and quad channel NCS20034 are available in a variety of compact and space–saving packages. The NCV prefix denotes that the device is AEC–Q100 Qualified and PPAP Capable.

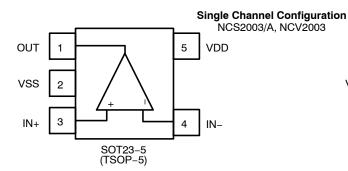
Features

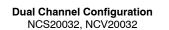
- Unity Gain Bandwidth: 7 MHz at $V_S = 5 V$
- Fast Slew Rate: 8 V/ μ s rising, 12.5 V/ μ s falling at V_S = 5 V
- Rail-to-Rail Output
- No Output Phase Reversal for Over-Driven Input Signals
- Low Offset Voltage: 0.5 mV typical
- Low Input Bias Current: 1 pA typical
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

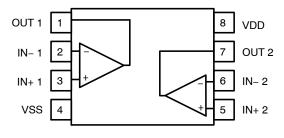

Applications

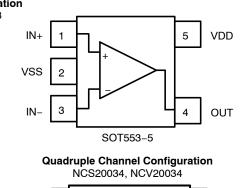
- Current Shunt Monitor
- Signal Conditioning
- Active Filter
- Sensor Buffer

End Products


- Motor Control Drives
- Hard Drives
- Medical Devices
- White Goods and Air Conditioners






ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

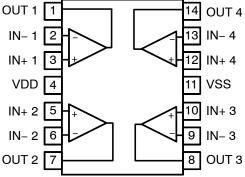


Figure 1. Pin Connections

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS2003SN2T1G	Single	No	AN3	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS2003ASN2T1G		No	AN4	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS2003XV53T2G		No	A3	SOT553–5 (Pb–Free)	4000 /Tape and Reel
NCV2003SN2T1G*		Yes	AN3	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS20032DMR2G	Dual	No	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCS20032DR2G			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20032DTBR2G			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCV20032DMR2G*		Yes	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCV20032DR2G*			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20032DTBR2G*			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCS20034DR2G	Quad	No	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20034DR2G*		Yes	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated

Parameter	Symbol	Limit	Unit
Supply Voltage (V _{DD} - V _{SS})	V _S	7.0	V
INPUT AND OUTPUT PINS			
Input Voltage (Note 1)	V _{IN}	V _{SS} – 0.3 to 7.0	V
Input Current	I _{IN}	10	mA
Output Short Current (Note 2)	I _O	100	mA
TEMPERATURE			
Storage Temperature	T _{STG}	-65 to 150	°C
Junction Temperature	TJ	150	°C
ESD RATINGS (Note 3)			

NCx2003, A	HBM	3000	V
			-
NCx20034		3000	
NCx2003 A	MM	200	V
			•
NGX20032		100	
NCx20034		150	
NCx2003, A	CDM	1000	V
NCx2003x		2000	
	NCx2003, A	NCx20032 NCx20034 NCx2003, A MM NCx20032 NCx20034 NCx20034 CDM	NCx20032 NCx20034 2000 3000 NCx2003, A NCx20032 NCx20034 MM 200 NCx20032 NCx20034 100 150 NCx2003, A CDM 1000

OTHER PARAMETERS

Moisture Sensitivity Level (Note 5)	MSL	Level 1	
Latch-up Current (Note 4)	ILU	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Neither input should exceed the range of V_{SS} – 300 mV to 7.0 V. This device contains internal protection diodes between the input pins and V_{DD}. When V_{IN} exceeds V_{DD}, the input current should be limited to the specified value.

2. Indefinite duration; however, maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.

3. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 and JESD22-A114 ESD Machine Model tested per AEC-Q100-003 and JESD22-A115

ESD Machine Model tested per AEC-Q100-003 and JESD22-A113 ESD Charged Device Model tested per AEC-Q100-011 and ANSI/ESD S5.3.1-2009

4. Latch-up current tested per JEDEC Standard JESD78.

5. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A.

THERMAL INFORMATION

Thermal Metric	Symbol	Package	Single Layer Board (Note 6)	Multi Layer Board (Note 7)	Unit
		SOT23-5/TSOP-5	408	355	
	Δ	SOT553-5	428	406	
Junction to Ambient		Micro8/MSOP8	235	163	0000
Thermal Resistance		SOIC-8	240	179	°C/W
			TSSOP-8	300	238
		SOIC-14	167	123	

6. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area

7. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (V _{DD} – V _{SS})	V _S	1.7	5.5	V
Specified Operating Range NCS2003, A NCV2003, NCx20032, NCx20034	T _A	-40 -40	+85 +125	°C
Input Common Mode Range	V _{CM}	V_{SS}	V _{DD} -0.6	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	<u>.</u>					
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003, NCx20032, NCx20034		0.5	4.0	mV
					5.0	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			2.0		μV/°C
		NCS2003A (Note 8)			6.0	μV/°C
Input Bias Current	I _{IB}			1		pА
Input Offset Current	I _{OS}			1		pА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		TΩ
Input Capacitance	C _{IN}			1.2		pF
Common Mode Rejection	CMRR	V_{IN} = V_{SS} to V_{DD} – 0.6 V	70	80		dB
Ratio		V_{IN} = V_{SS} + 0.2 V to $V_{DD} - 0.6$ V	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	A _{VOL}	$R_L = 10 \ k\Omega$		80	92		dB
				75			
		$R_L = 2 k\Omega$			92		
				70			
Output Current Capability I _{SC}		Sourcing		5	8		mA
(Note 8)		Sinking		10	14		
Output Voltage High	V _{OH}	R _L = 10 kΩ		1.75	1.798		V
		$R_L = 2 k\Omega$		1.7	1.78		
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$	NCx2003, A		7	50	mV
			NCx2003x		7	100	
		$R_L = 2 k\Omega$	•		20	100	

NOISE PERFORMANCE

Voltage Noise Density	e _N	f = 1 kHz	20	nV/√ Hz
Current Noise Density	i _N	f = 1 kHz	0.1	pA√Hz

DYNAMIC PERORMANCE

Gain Bandwidth Product	GBWP			5	MHz
Claur Data at Unity Cain	00	Rising Edge, $R_L = 2 k\Omega$, $A_V = +1$		6	
Siew Rate at Onity Gain	w Rate at Unity Gain SR Falling Edge, $R_L = 2 k\Omega$, $A_V = +1$		9	V/μs	
Phase Margin	Ψm	R_L = 10 k Ω , C_L = 5 pF		53	0
Gain Margin	A _m	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$	NCx2003, A	12	dB
			NCx2003x	8	
Settling Time	t _S	V _O = 1 Vpp, Gain = 1, C _L = 20 pF	Settling time to 0.1%	1.8	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Тур	Max	Unit
DYNAMIC PERORMANCE						
Total Harmonics Distortion + Noise	THD+N	V_{O} = 1 V_{pp} , R_{L} = 2 k Ω , A_{V} = +1, f = 1 kHz		0.005		%
Noise		V_{O} = 1 V_{pp} , R_{L} = 2 k Ω , A_{V} = +1, f = 10 kHz		0.025		

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	NCx2003		72	80		dB
		-		65			
		NCx20032, NCx2	NCx20032, NCx20034		100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		230	560	μΑ
						1000	
			NCx20032,		275	375	
			NCx20034			575	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	3					
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003		0.5	4.0	mV
		NCx20032, NCx20034			5.0	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			2.0		μV/°C
		NCS2003A (Note 9)			6.0	μV/°C
Input Bias Current	I _{IB}			1		pА
Input Offset Current	I _{OS}			1		pА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		ТΩ
Input Capacitance	C _{IN}			1.2		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS		·					
Common Mode Rejection Ratio	CMRR	NCx2003, A	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	65	90		dB
			$V_{IN} = V_{SS} + 0.2 V$ to $V_{DD} - 0.6 V$	63			
		NCx20032, NCx20034	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	70	90		
			$V_{IN} = V_{SS} + 0.2 V$ to $V_{DD} - 0.6 V$	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain A _{VOL}		$R_L = 10 k\Omega$		86	92		dB
				78			
		R _L = 2	kΩ	83	92		
				78			
Output Current Capability	I _{SC}	Sourcing		40	76		mA
(Note 9)		Sinking		50	96		
Output Voltage High	V _{OH}	R _L = 1	0 kΩ	4.95	4.99		V
		R _L = 2	2 kΩ	4.9	4.97		
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$	NCx2003, A		8	50	mV
			NCx2003x		8	100	1
		R _L = 2	kΩ		24	100	1

NOISE PERFORMANCE

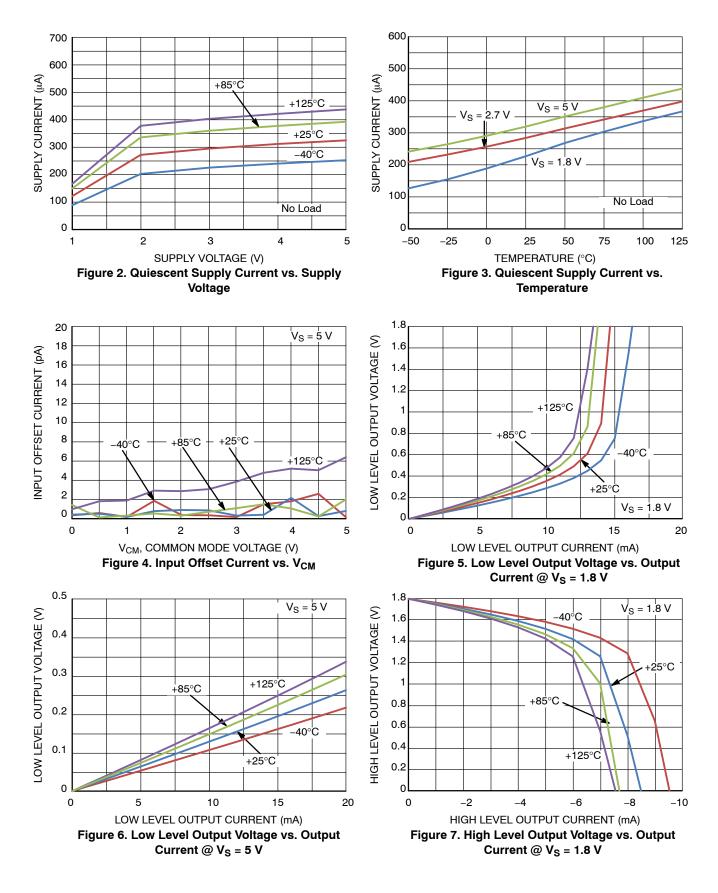
Voltage Noise Density	e _N	f = 1 kHz	20	nV/√Hz
Current Noise Density	i _N	f = 1 kHz	0.1	pA√Hz

DYNAMIC PERORMANCE

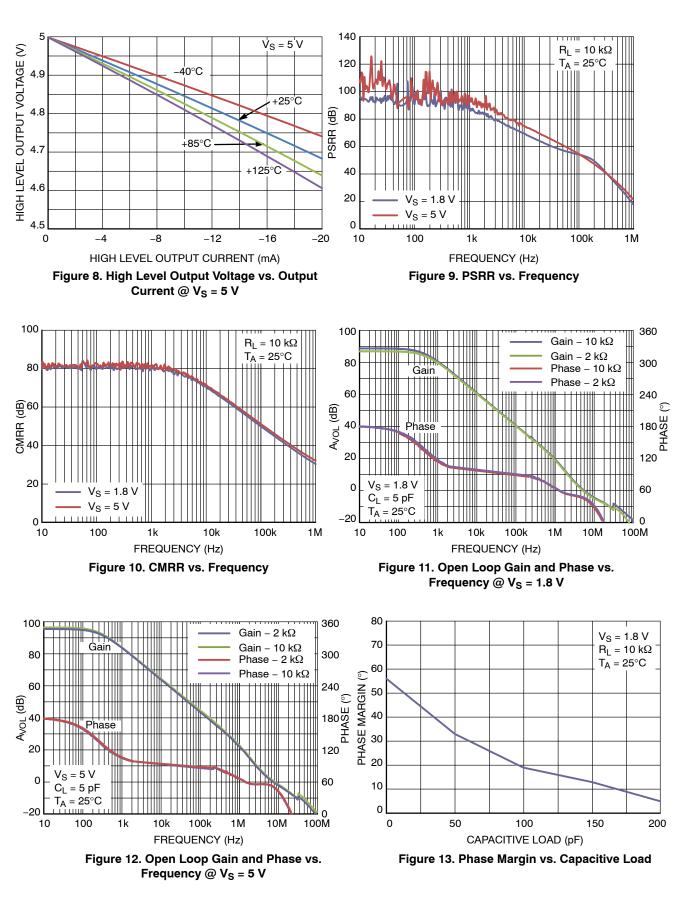
Gain Bandwidth Product	GBWP			7		MHz
Slew Rate at Unity Gain	SR	Rising Edge, R _L =	2 kΩ, AV = +1	8		V/µs
		Falling Edge, R _L =	2 kΩ, AV = +1	12.	5	
Phase Margin	Ψm	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$	NCx2003, A	64		0
			NCx2003x	56		
Gain Margin	A _m	R _L = 10 kΩ, C	C _L = 5 pF	9		dB
Settling Time	t _S	V _O = 1 V _{pp} , Gain = 1, C _L = 20 pF	Settling time to 0.1%	0.6	;	μs
Total Harmonics Distortion +	THD+N	$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega,$	A _V = +1, f = 1 kHz	0.00	2	%
Noise		$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega, A$	A _V = +1, f = 10 kHz	0.0	1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 9. Guaranteed by design and/or characterization.

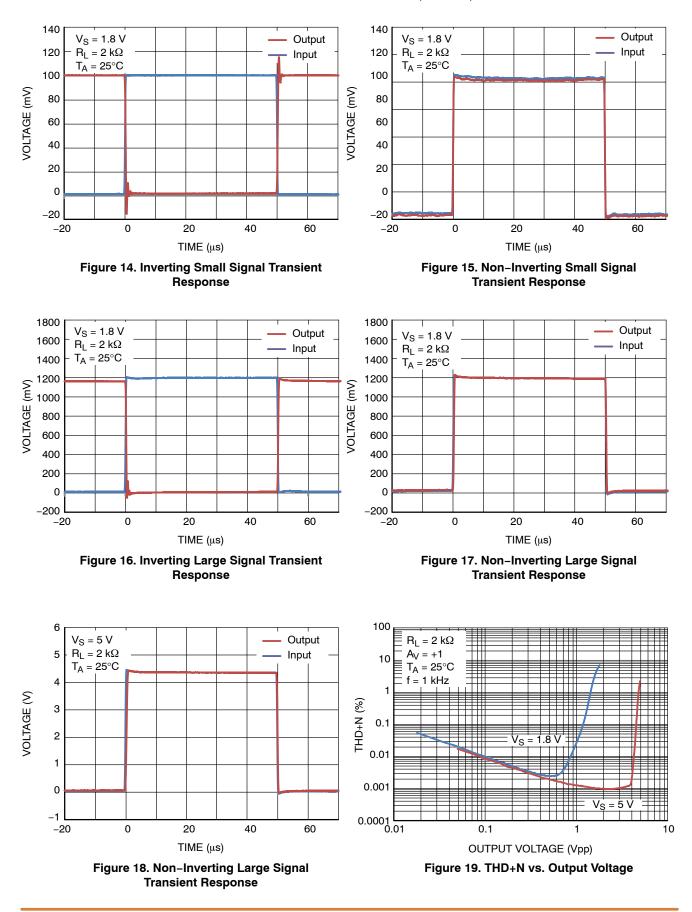
ELECTRICAL CHARACTERISTICS: V_S = +5.0 V (continued)


At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

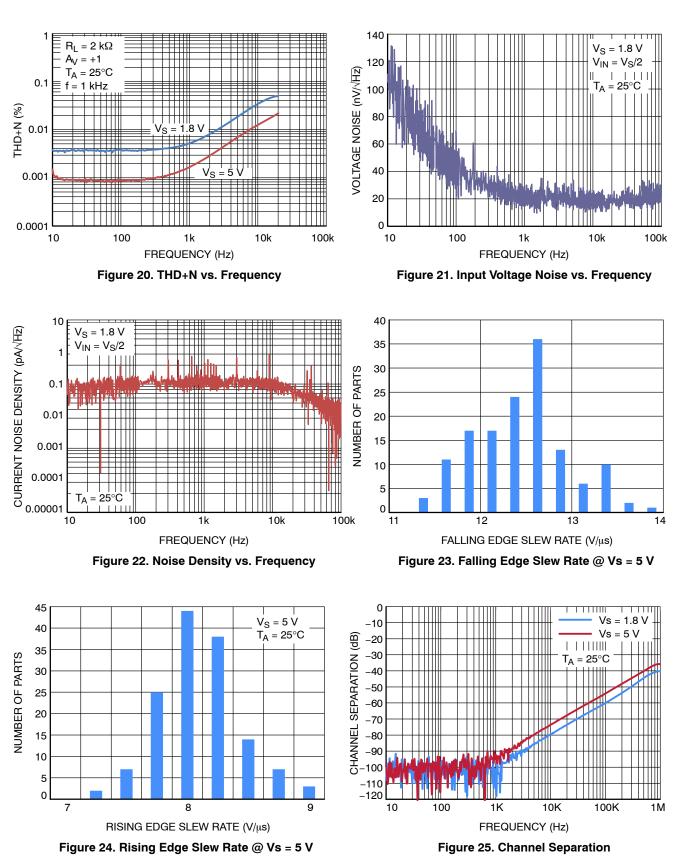
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	NCx2003	NCx2003, A		80		dB
				65			
	NCx20032, NCx20034		80	100			
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		300	660	μΑ
						1000	
			NCx20032,		325	450	
			NCx20034				


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

675

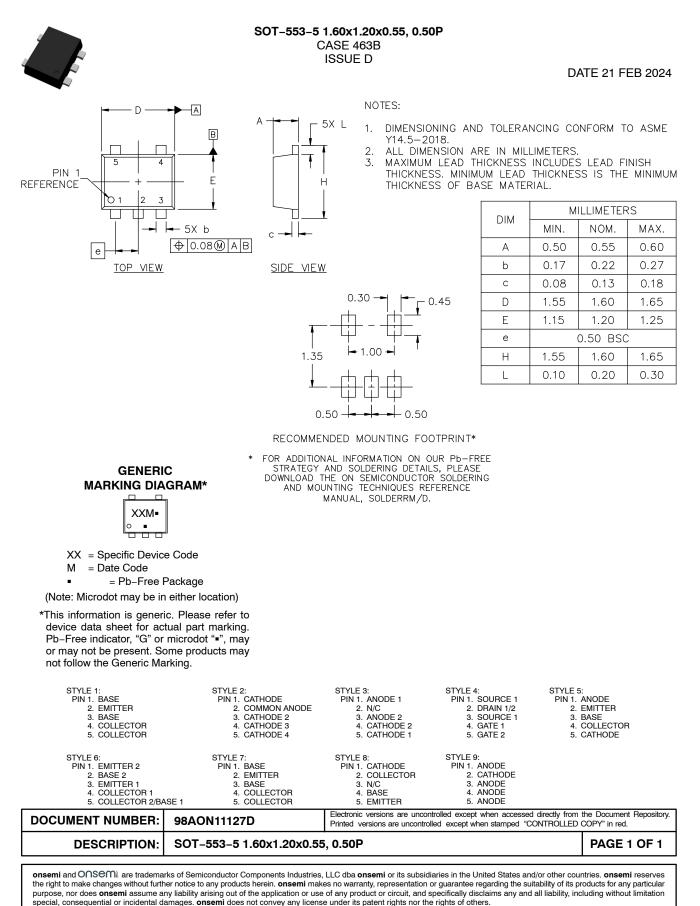

9. Guaranteed by design and/or characterization.

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS (Continued)

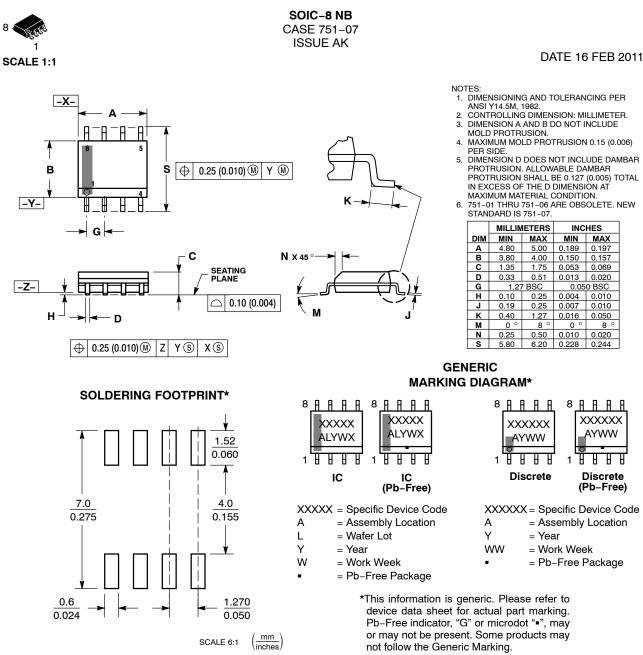
TYPICAL CHARACTERISTICS (Continued)


<u>www.onsemi.com</u> 10

TYPICAL CHARACTERISTICS (Continued)

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi



MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TSOP-5 3.00x1.50x0.95, 0.95P **CASE 483** ISSUE P DATE 01 APR 2024 NOTES: 5X b 0.20 C A B DIMENSIONING AND TOLERANCING CONFORM TO ASME NOTE 5 1. Y14.5-2018. ALL DIMENSION ARE IN MILLIMETERS (ANGLES IN DEGREES). MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. 2. В 3. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. Ė1 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OF GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D. 5 OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS PIN 1 ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND IDENTIFIER le MORE THAN 0.2 FROM BODY. A MILLIMETERS DIM NOM. TOP VIEW MIN. MAX 0.900 1.000 1.100 DETAIL A А (A2) A1 0.010 0.055 0.100 Α2 0.950 REF 0.250 0.375 0.500 h 0.100 0.180 0.260 с 0.05 C SEATING 2.850 D 3.000 3.150 Ċ A1 PLANE END VIEW SIDE VIEW Ε 2.500 2.750 3.000 1.350 E1 1.500 1.650 0.950 BSC е 0.250 GAUGE 0.400 L 0.200 0.600 0° 5° 10° Θ 1.900Ð 0.950 "A DETAIL SCALE 2:1 GENERIC **MARKING DIAGRAM*** 2.400 5 5 XXXAYW= XXX M= 1.000 1 0.700Analog Discrete/Logic RECOMMENDED MOUNTING FOOTPRINT* XXX = Specific Device Code XXX = Specific Device Code FOR ADDITIONAL INFORMATION ON OUR Pb-FREE А = Assembly Location Μ = Date Code STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD = Pb-Free Package v = Year THE ON SEMICONDUCTOR SOLDERING AND MOUNTING W = Work Week TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ARB18753C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** TSOP-5 3.00x1.50x0.95, 0.95P PAGE 1 OF 1 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DUSEU

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED 0	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other courses no warranty, representation or guarantee regarding the suitability of its proof any product or circuit, and specifically disclaims any and all liability, incle e under its patent rights nor the rights of others.	oducts for any particular

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2
	when of Compion when the second second second		

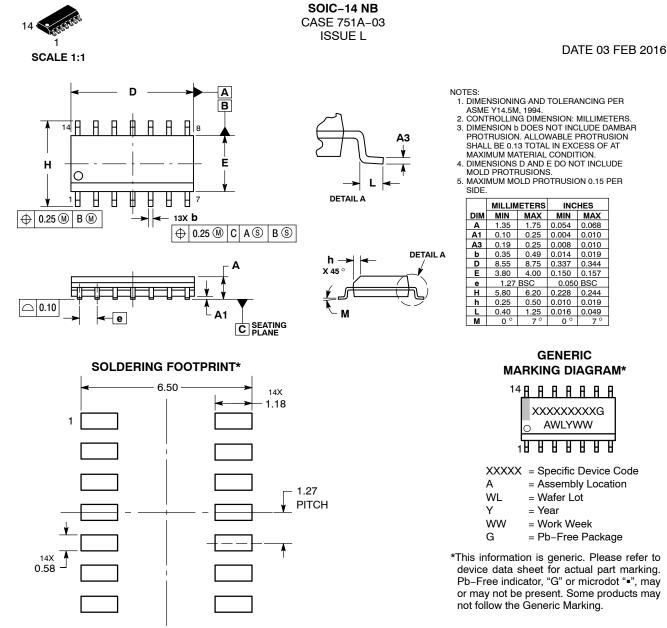
onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1


DUSEM

0.068

0.019

0.344

0.244

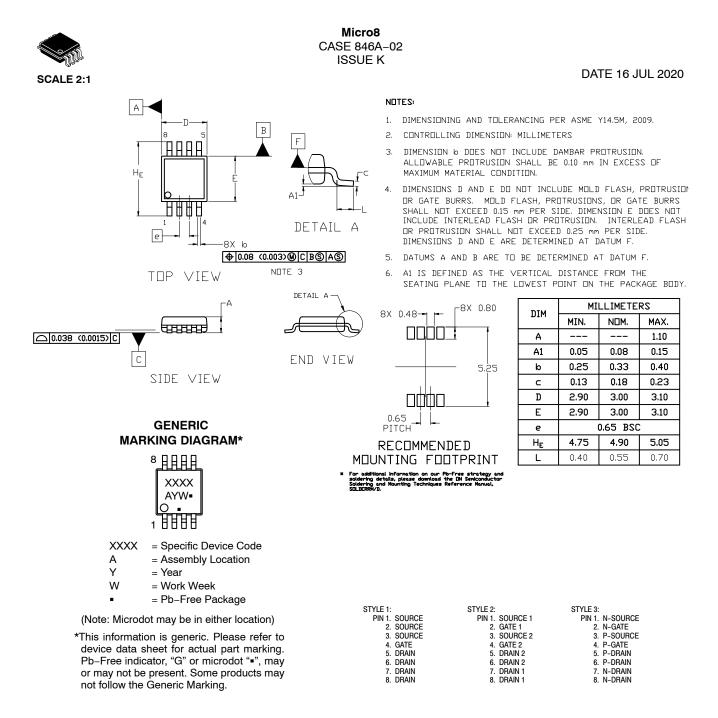
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

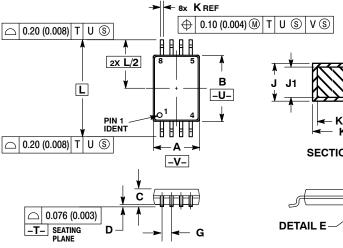
SOIC-14 CASE 751A-03 ISSUE L

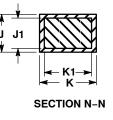

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

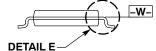
DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repositon Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		

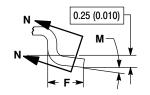
onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.




DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	MICRO8		PAGE 1 OF 1
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

Onsemi




SCALE 2:1

TSSOP-8 CASE 948S **ISSUE C**

DETAIL E

DATE 20 JUN 2008

NOTES:

- IOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. 6.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	4.30	4.50	0.169	0.177	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65	BSC	0.026 BSC		
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	6.40 BSC		BSC	
М	0°	8°	0°	8°	

GENERIC **MARKING DIAGRAM***

0	XXX			
	YWW			
	A∎			
	•			

XXX	= Specific Device Code		
Α	= Assembly Location		
Υ	= Year		
WW	= Work Week		
	= Pb-Free Package		

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-8		PAGE 1 OF 1			
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.						

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>