Protected Power MOSFET

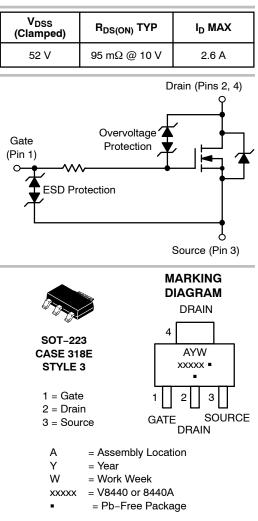
2.6 A, 52 V, N–Channel, Logic Level, Clamped MOSFET w/ ESD Protection

Features

- Diode Clamp Between Gate and Source
- ESD Protection Human Body Model 5000 V
- Active Over-Voltage Gate to Drain Clamp
- Scalable to Lower or Higher R_{DS(on)}
- Internal Series Gate Resistance
- These are Pb–Free Devices

Benefits

- High Energy Capability for Inductive Loads
- Low Switching Noise Generation


Applications

- Automotive and Industrial Markets: Solenoid Drivers, Lamp Drivers, Small Motor Drivers
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	52–59	V
Gate-to-Source Voltage - Continuous	V _{GS}	±15	V
Drain Current – Continuous @ T _A = 25°C – Single Pulse (t _p = 10 μs) (Note 1	, I _D	2.6 10	A
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1)	PD	1.69	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 50 V, I _{D(pk)} = 1.17 A, V _{GS} = 10 V, L = 160 mH, R _G = 25 Ω)		110	mJ
Load Dump Voltage (V_{GS} = 0 and 10 V, R_I = 2.0 $\Omega,~R_L$ = 9.0 $\Omega,~td$ = 400 ms)	V _{LD}	60	V
Thermal Resistance, Junction-to-Ambient (Note 1 Junction-to-Ambient (Note 2		74 169	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. When surface mounted to a FR4 board using 1" pad size, (Cu area 1.127 in²).
2. When surface mounted to a FR4 board using minimum recommended pad size, (Cu area 0.412 in²).

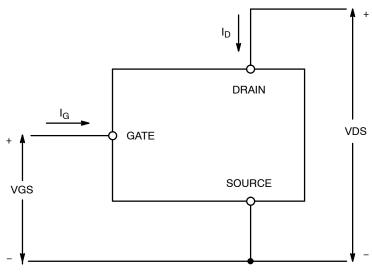


Figure 1. Voltage and Current Convention

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•		
$\begin{array}{l} Drain-to-Source Breakdown Voltage (N \\ (V_{GS}=0 \ V, \ I_D=1.0 \ mA, \ T_J=25^\circ C) \\ (V_{GS}=0 \ V, \ I_D=1.0 \ mA, \ T_J=-40^\circ C \\ Temperature Coefficient (Negative) \end{array}$,	V _{(BR)DSS}	52 50.8	55 54 –9.3	59 59.5	V V mV/°C
Zero Gate Voltage Drain Current (V_{DS} = 40 V, V_{GS} = 0 V) (V_{DS} = 40 V, V_{GS} = 0 V, T_{J} = 125°C)	(Note 4)	I _{DSS}			10 25	μΑ
$\begin{array}{l} Gate-Body \ Leakage \ Current \\ (V_{GS}=\pm 8 \ V, \ V_{DS}=0 \ V) \\ (V_{GS}=\pm 14 \ V, \ V_{DS}=0 \ V) \end{array}$		I _{GSS}		±35	±10	μΑ
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 100 \mu A)$ Threshold Temperature Coefficient (Neg	ative)	V _{GS(th)}	1.1	1.5 -4.1	1.9	V mV/°C
$\begin{array}{l} Static \ Drain-to-Source \ On-Resistance \\ (V_{GS}=3.5 \ V, \ I_D=0.6 \ A) \\ (V_{GS}=4.0 \ V, \ I_D=1.5 \ A) \\ (V_{GS}=10 \ V, \ I_D=2.6 \ A) \end{array}$	(Note 3)	R _{DS(on)}		150 135 95	180 160 110	mΩ
Forward Transconductance (Note 3) (V_{DS} = 15 V, I_D = 2.6 A)		9 FS		3.8		Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}		155		pF
Output Capacitance	V _{DS} = 35 V, V _{GS} = 0 V, f = 10 kHz	C _{oss}		60		
Transfer Capacitance	· · · · · · · · · · · · · · · · · · ·	C _{rss}		25		
Input Capacitance		C _{iss}		170		pF
Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 10 kHz	C _{oss}		70		
Transfer Capacitance		C _{rss}		30		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

4. Not subject to production testing.
 5. Switching characteristics are independent of operating junction temperatures.

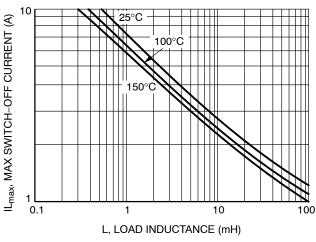
MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Note 5)					
Turn-On Delay Time		t _{d(on)}		375		ns
Rise Time	V _{GS} = 4.5 V, V _{DD} = 40 V,	t _r		1525		
Turn-Off Delay Time	$I_{\rm D} = 2.6 \text{ A}, \text{ R}_{\rm D} = 15.4 \Omega$	t _{d(off)}		1530		
Fall Time		t _f		1160		
Turn-On Delay Time		t _{d(on)}		325		ns
Rise Time	V _{GS} = 4.5 V, V _{DD} = 40 V,	t _r		1275		
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, V_{DD} = 40 \text{ V}, \\ I_D = 1.0 \text{ A}, \text{ R}_D = 40 \Omega$	t _{d(off)}		1860		
Fall Time		t _f		1150		
Turn-On Delay Time		t _{d(on)}		190		ns
Rise Time	V _{GS} = 10 V, V _{DD} = 15 V,	t _r		710		
Turn-Off Delay Time	$I_{\rm D} = 2.6 \text{ A}, \text{ R}_{\rm D} = 5.8 \Omega$	t _{d(off)}		2220		
Fall Time		t _f		1180		
Gate Charge		Q _T		4.5		nC
	V _{GS} = 4.5 V, V _{DS} = 40 V, I _D = 2.6 A (Note 3)	Q ₁		0.9		1
		Q ₂		2.6		
Gate Charge		Q _T		3.9		nC
	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 1.5 A (Note 3)	Q ₁		1.0		1
		Q ₂		1.7		1
SOURCE-DRAIN DIODE CHARA	ACTERISTICS					
Forward On-Voltage	$l_{0} = 2.6 \text{ A} / l_{00} = 0.1/ (Note 3)$	Ver		0.81	15	V

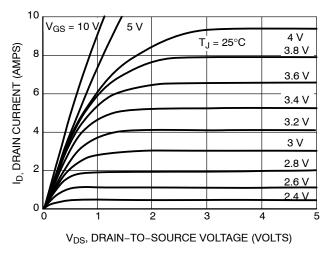
Forward On-Voltage	I_{S} = 2.6 A, V_{GS} = 0 V (Note 3) I_{S} = 2.6 A, V_{GS} = 0 V, T_{J} = 125°C	V _{SD}	0.81 0.66	1.5	V
Reverse Recovery Time		t _{rr}	730		ns
	I _S = 1.5 A, V _{GS} = 0 V, dI _s /dt = 100 A/μs (Note 3)	t _a	200		
		t _b	530		
Reverse Recovery Stored Charge		Q _{RR}	6.3		μC

ESD CHARACTERISTICS (Note 4)

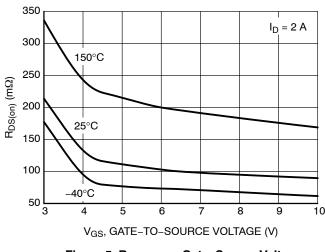
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	5000		V
	Machine Model (MM)		500		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2%.


4. Not subject to production testing.

5. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES

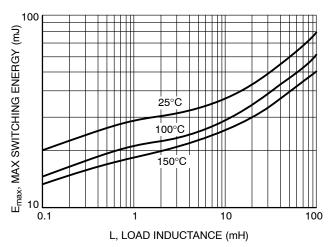


Figure 2. Single Pulse Maximum Switching Energy vs. Load Inductance

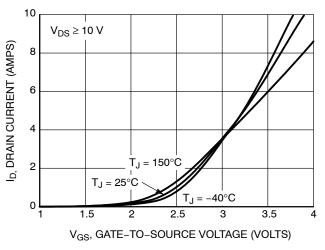


Figure 4. Transfer Characteristics

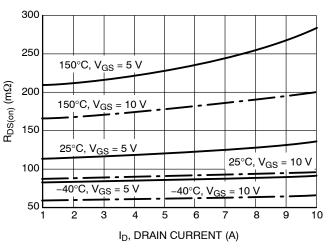
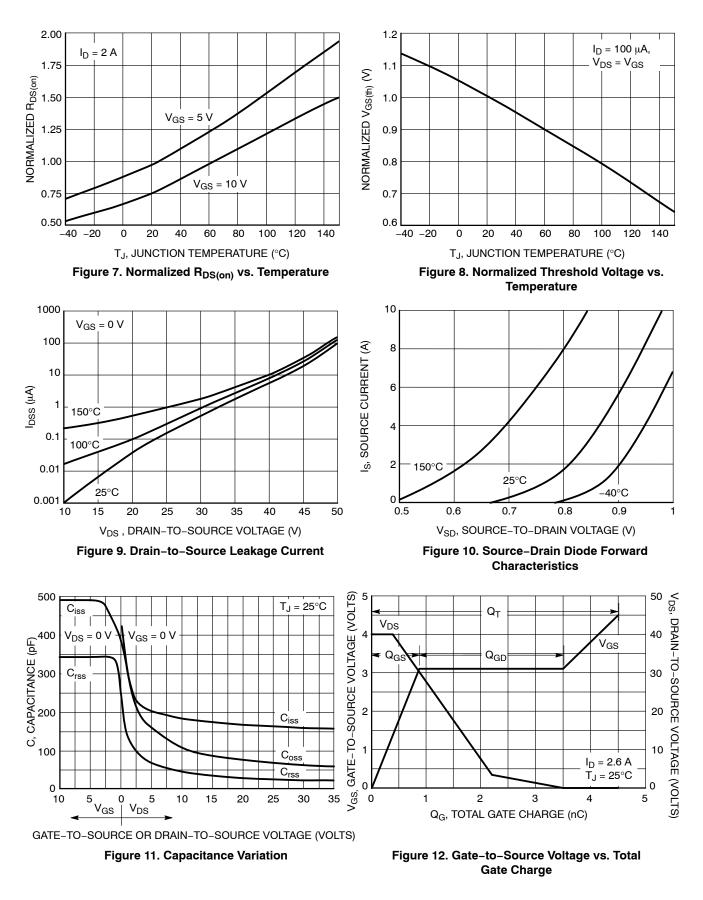
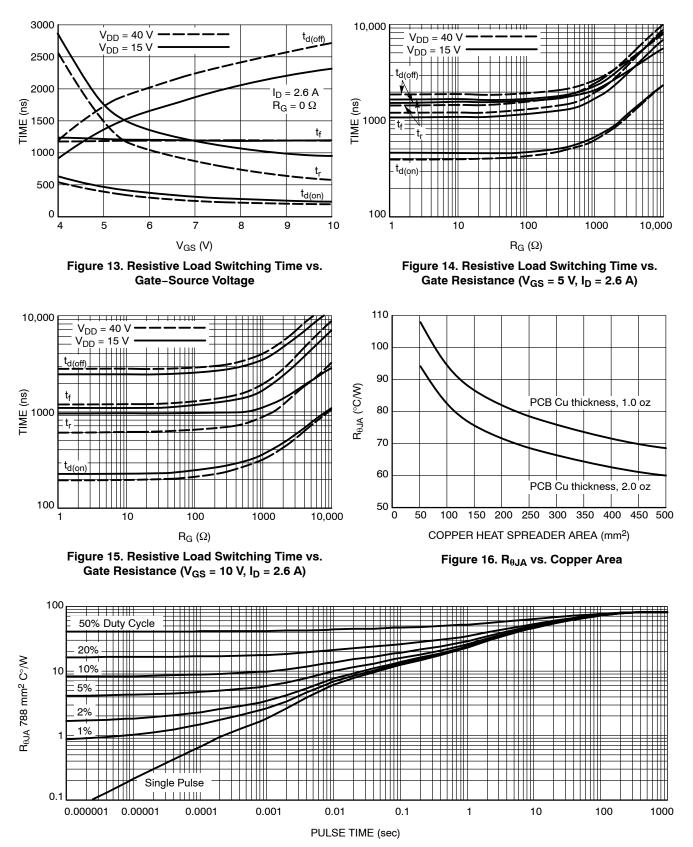




Figure 6. R_{DS(on)} vs. Drain Current

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8440STT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8440ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8440STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8440ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>