Power MOSFET

40 V, 70 A, Single N-Channel, DPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Low Gate Charge
- STD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Electronic Brake Systems
- Electronic Power Steering
- Bridge Circuits

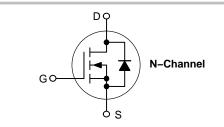
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain	Steady	Steady $T_C = 25^{\circ}C$		70	Α
Current – R _{θJC}	State	T _C = 125°C		40	
Power Dissipation – R _{θJC}	Steady State	T _C = 25°C	P _D	100	W
Continuous Drain	Steady State	T _A = 25°C	I _D	12.2	Α
Current – R _{θJA} (Note 1)	State	T _A = 125°C		7.0	
Power Dissipation – R _{θJA} (Note 1)	Steady State	T _A = 25°C	P _D	3.0	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	150	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 175	°C
Source Current (Body Diode) Pulsed			I _S	63.5	Α
Single Pulse Drain–to Source Avalanche Energy – (V_{DD} = 50 V, V_{GS} = 10 V, I_{PK} = 30 A, L = 1 mH, R_G = 25 Ω)			EAS	450	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

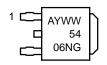
THERMAL RESISTANCE RATINGS (Note 1)

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.5	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	49	


Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX (Note 1)
40 V	8.7 mΩ @ 10 V	70 A

DPAK CASE 369C STYLE 2

MARKING DIAGRAM

A = Assembly Location*

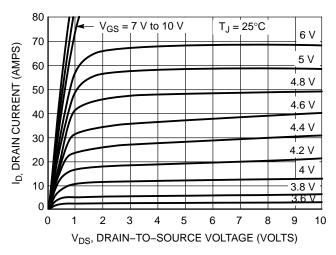
Y = Year WW = Work Week

5406N = Specific Device Code G = Pb-Free Device

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

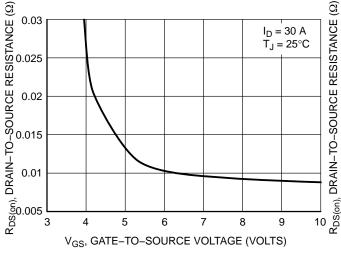
Device	Package	Shipping†
NTD5406NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
STD5406NT4G*	DPAK (Pb-Free)	2500 / Tape & Reel
STD5406NT4G-VF01	DPAK (Pb-Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	-		•		•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				42		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 100°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{G}$	_{iS} = ±30 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.5		3.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-7.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I	I _D = 30 A		8.7	10	mΩ
		$V_{GS} = 5.0 \text{ V},$	I _D = 10 A		13.2	17	7
Forward Transconductance	9FS	V _{GS} = 10 V, I	I _D = 10 A		19		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 32 \text{ V}$			1375	2500	pF
Output Capacitance	C _{OSS}				370	700	
Reverse Transfer Capacitance	C _{RSS}	, D2 – 0			160	300	
Total Gate Charge	Q _{G(TOT)}				45		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _I		2.0			
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 10 \text{ V}, V_{DS} = 32 \text{ V},$ $I_{D} = 30 \text{ A}$			5.4		
Gate-to-Drain Charge	Q_{GD}				20		
SWITCHING CHARACTERISTICS, V_0	_{SS} = 10 V (Note	3)					
Turn-On Delay Time	t _{d(ON)}				7.2		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DD} = 32 \text{ V},$ $I_D = 30 \text{ A}, R_G = 2.5 \Omega$			57		
Turn-Off Delay Time	t _{d(OFF)}				30		7
Fall Time	t _f				67		
SWITCHING CHARACTERISTICS, Vo	SS = 5 V (Note 3)					
Turn-On Delay Time	t _{d(ON)}				15		ns
Rise Time	t _r	V _{GS} = 5.0 V, V	nn = 20 V.		147		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 30 \text{ A}, R_G = 2.5 \Omega$			20		
Fall Time	t _f				29		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 10 A	T _J = 25°C		0.82	1.1	V
			T _J = 125°C		0.67		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 10 \text{ A}$			46		ns
Charge Time	ta				24		
Discharge Time	t _b				22		
Reverse Recovery Charge	Q _{RR}				65		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 3. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES

80 $V_{DS} \ge 10 \text{ V}$ 70 ID, DRAIN CURRENT (AMPS) 60 50 40 30 T_J = 100°C 20 $T_J = 25^{\circ}C$ 10 $T_{.1} = -55^{\circ}C$ 0 0 2 5 6 3 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

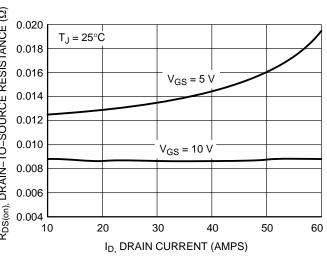
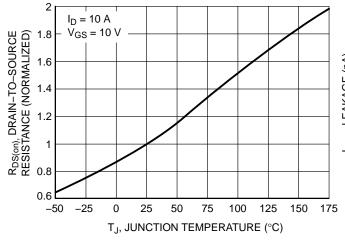



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

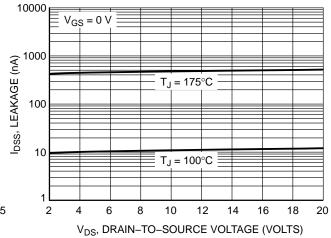
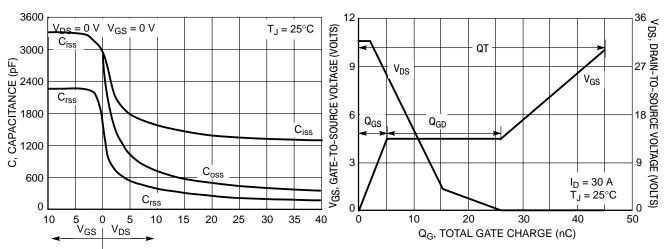



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

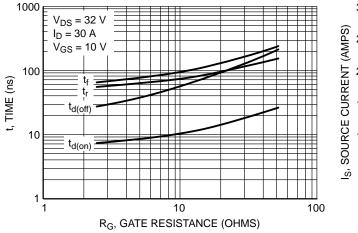


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

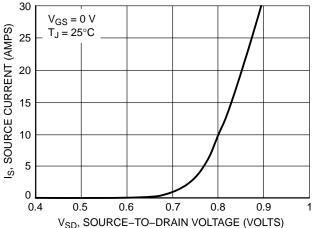


Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CURVES

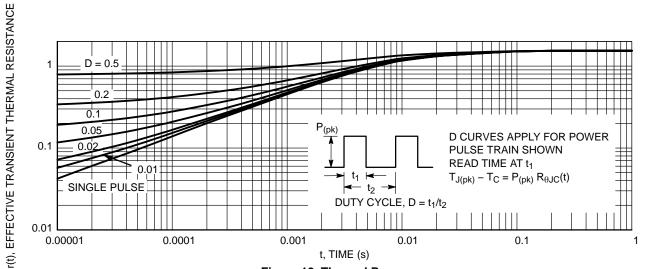
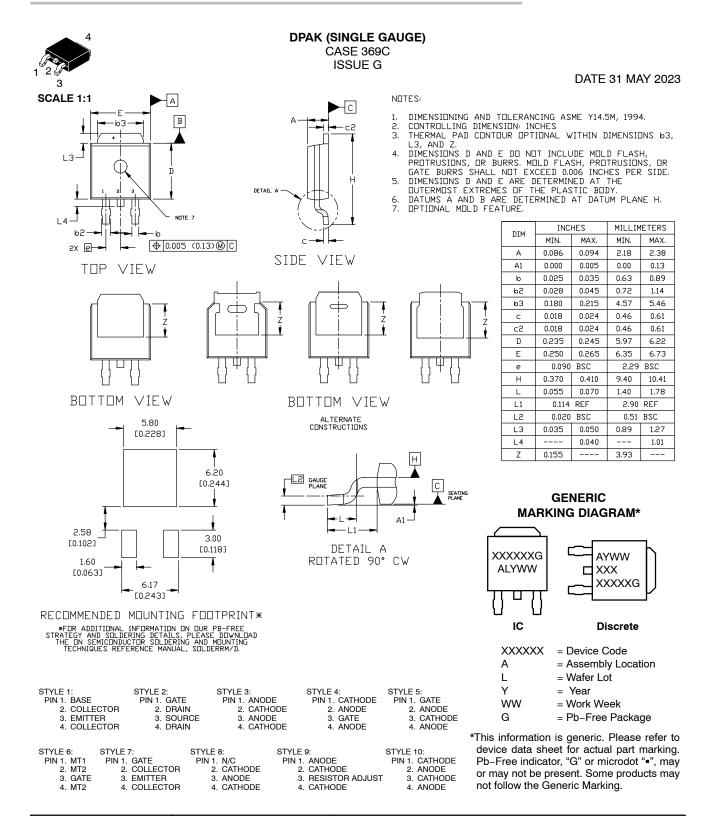



Figure 12. Thermal Response

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales