ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Design Note – DN06055/D

Power Supply PSU

Device	Application	Input Voltage	Output Voltage	Output Current	Topology
CS51221	Cash Drawer	12 V	24V	4 A	Boost

Table 1: CS51221 Cash Drawer Power Supply

Characteristic	Min	Тур	Max	Unit
Output Voltage	23.56	24.72	26.04	V
Output Current	.5		20	А
Oscillator Frequency		140		kHz
Output Voltage Ripple	100	150	300	mVpk- pk
Load Regulation Iout = (0.1-8.3A) Vin= 12V		-1.33		mV/A
Size	Length	Width	Height	
5120	80	59	31	mm

Figure 1: Demonstration Board Picture

Circuit Description

The design must minimize the use of through hole components, designed as small as possible on a 4 layer PCB, and only populated on one side. The power supply is required to maintain an 24.7V output while with an input of 12V.

Item	Description	Minimum	Maximum	Measured	Pass/ Fail
	Tolerance Line and Load				1 all
1	Regulation (USB)	23.56 V	26.04 V	24.72 V	PASS
	Tolerance Line and Load				
2	Regulation (Cash Drawer	21.08 V	26.04 V	24.72 V	PASS
	Interface)				
	Ripple Voltage Nominal				
3	Current (peak to peak)		100 mV	50 mV	PASS
	Noise, HF ripple (peak to				
4	peak)		300 mV	149 mV	PASS
	Transient Response	22.8 V	26.04 V	MIN = 24.24 V	
5	1.5A to 4.5A			MAX = 24.95 V	PASS
	(10 A/us slew rate)				
	Transient Response	22.8 V	26.04 V	MIN = 24.24 V	
6	1.5A to 7A			MAX = 24.85 V	PASS
	(10 A/us slew rate)				
	Transient Response	19.84 V	26.04 V	MIN = 21.23 V	
7	0A to 20A			MAX = 25.65 V	PASS
	(10 A/us slew rate)				
	Transient Response	22.32 V	26.04 V	MIN = 23.97 V	
8	2A to 16A			MAX = 25.21 V	PASS
	(.014 A/us slew rate)				
	Transient Response	22.32 V	26.04 V	MIN = 23.8 V	
9	0A to 16A			MAX = 24.95 V	PASS
	(.014 A/us slew rate)				

Table 2: CS51221 Cash Drawer Power Supply Compliance Matrix

The design has the following features:

- Adjustable cycle by cycle current limiting
- Over voltage Shutoff
- Under voltage shutoff
- Can be synchronized to a higher frequency
- Programmable soft start
- Voltage feed forward

Performance Information

The following figures show typical performance of the evaluation board.

Figure 2: CS51221 Efficiency at 12V with a 24.7V Output Voltage

Figure 3: CS51221 Load Regulation

Figure 4: CS51221 Schematic

Figure 5: CS51221 Top Layout

Figure 6: CS51221 Top Inner Layout

Rev 2 - December, 2008

Figure 7: CS51221 Bottom Inner Layout

Table 3: CS51221 BOM

Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
C5	1	Ceramic Chip Capacitor 10V	330n	±20%	805	AVX Corporation	0805ZC334JAT2A
C8	1	Ceramic Chip Capacitor 25V	0.1uF	±20%	603	AVX Corporation	06033C104MAT2A
C2	1	Ceramic Chip Capacitor 25V	0.1uF	±20%	603	AVX Corporation	06033C104MAT2A
C12	1	Ceramic Chip Capacitor 10V	1.5nF	±10%	603	AVX Corporation	0603YC152KAT2A
C6	1	Ceramic Chip Capacitor 10V	1nF	±10%	603	AVX Corporation	0603ZC102KA72A
C4	1	Ceramic Chip Capacitor 6.3V	1uF	±10%	603	AVX Corporation	06036D105KAT2A
C20	1	Ceramic Chip Capacitor 25V	1uF	±20%	603	AVX Corporation	06033D105MAT2A
C10	1	Ceramic Chip Capacitor 50V	2.2nF	±5%	603	AVX Corporation	06035C222JAT2A
C11	1	Ceramic Chip Capacitor 16V	82nF	±10%	603	AVX Corporation	0603YC823KAT2A
C24	1	Ceramic Chip Capacitor 6.3V	1.2n	±5%	805	AVX Corporation	08056A122JAT2A
C16	1	Ceramic Chip Capacitor 100V	1.2nF	±10%	1206	AVX Corporation	12061A122KAT2A
C3	1	Ceramic Chip Capacitor 100V	1nF	±10%	1206	AVX Corporation	12061C102KAT2A
C21 C23	2	Ceramic Chip Capacitor 50V	1uF	±10%	1206	AVX Corporation	12065C105KAT2A
C1	1	Ceramic Chip Capacitor 50V	4.7uF	±20%	1812	TDK Corporation	C4532X7R1H475M
U1	1	Mode PWM Controller	3V Ref	NA	SOIC 16	ON Semiconductor	CS51221EDR16G
C7 C9 C13-15 C17-19	8	Electrolytic Capacitor	680uF	±20%	12.5X25	United Chemicon	EKZE500ELL681MK30S
D1	1	Schottky Power Rectifier	40A 100V	NA	D2PAK 3 LEAD	ON Semiconductor	MBRB41H100CTT4G
Q5	1	NPN Transistor	40V 200mA	NA	SOT-23	ON Semiconductor	MMBT3904TT1G
Z1	1	Zener Diode	14V	±5%	SOD-123	ON Semiconductor	MMSZ5244BT1G
U2-3	2	N MOSFET 8.1mOhm	60V 50A	NA	DPAK	Infineon	IPB081N06L3G
R5	1	SMT Resistor	49.9k	±1.0%	1206	Vishay	CRCW120649K9FKEA
R14	1	SMD Resistor	1.02k	$\pm 1.0\%$	603	Vishay / Dale	CRCW06031K02FKEA
R3	1	SMD Resistor	1.58k	$\pm 1.0\%$	603	Vishay / Dale	CRCW06031K58FKEA
R20	1	SMD Resistor	1k	±5.0%	603	Vishay / Dale	CRCW06031K00JNEA
R9	1	SMD Resistor	20R0	$\pm 1.0\%$	603	Vishay / Dale	CRCW060320R0FKEA
R21	1	SMD Resistor	27.4k	±1.0%	603	Vishay / Dale	CRCW060327K4FKEA
R2	1	SMD Resistor	3.09k	±1.0%	603	Vishay / Dale	CRCW06033K09FKEA
R7	1	SMD Resistor	40.2k	±1.0%	603	Vishay / Dale	CRCW060340K2FKEA
R23	1	SMD Resistor	41.2k	±1.0%	603	Vishay / Dale	CRCW060341K2FKEA
R13	1	SMD Resistor	49.9k	±1.0%	603	Vishay / Dale	CRCW060349K9FKEA
R1	1	SMD Resistor	57.6k	±1.0%	603	Vishay / Dale	CRCW060357K6FKEA

Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number
R26	1	SMD Resistor	6.04k	±1.0%	603	Vishay / Dale	CRCW06036K04FKEA
R25	1	SMD Resistor	8.2k	±1.0%	603	Vishay / Dale	CRCW06038K20FKEA
R8 R12	2	SMD Resistor	0R0	±5.0%	1206	Vishay / Dale	CRCW12060000Z0EA
R11 R15	2	SMD Resistor	10R0	±5.0%	1206	Vishay / Dale	CRCW120610R0FKEA
R10	1	SMD Resistor	4.99k	$\pm 1.0\%$	1206	Vishay / Dale	CRCW12064K99FKEA
R6	1	SMD Resistor	8.06K	±1.0%	1206	Vishay / Dale	CRCW12068K06FKEA
R4	1	SMD Resistor	5mOhm	$\pm 1.0\%$	4527	Vishay / Dale	WSR55L00F
L2	1	SMT Inductor 0.17 mOhm	.1 uH	±10%	7.5mmX7.6mm	Coilcraft	SLC7649S-101KL
L1	1	SMT Inductor 1.8 mOhm	10 uH	±10%	27.94mmX27.9mm	Coilcraft	SER2918H-103

Figure 9: Vin = 12V Vout = 24V Iout = 4A 149 mVpp High Frequency 50mV Fundamental

The PSU has to cover the following peak load conditions:

Figure 10: Transient Response 1.5A to 4.5A with a Slew Rate of 10A/us for a Duration of 300ms and a Period of 1800ms

Diagram2: Ipeak: 7A/210ms, T=1050ms; P24V8 tolerance: +22.8V / -8%

Figure 11: Transient Response 1.5A to 7A with a Slew Rate of 10A/us for a Duration of 210ms and a Period of 1050ms

Rev 2 - December, 2008

Figure 13: Transient Response 2A to 16A with a Slew Rate of 0.014A/us and a Period of 2ms

Figure 14: Transient Response 0A to 16A with a Slew Rate of 0.014A/us and a Period of 3.4 ms

Figure 15: 12V Frequency Response 1.3 kHz at 51 Degrees of Phase Margin 4A Load

Figure 16: Thermal Image of PCB at 12V with a 4A Load and 25C Ambient

© 2009 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Tim Kaske and Bryan McCoy, e-mail: <u>Tim.Kaske@onsemi.com</u>; <u>Bryan.McCoy@onsemi.com</u>