onsemi

MOSFET – P-Channel, POWERTRENCH[®]

2.5 V Specified

FDC608PZ, FDC608PZ-F171

Description

This P-Channel 2.5 V specified MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. These devices are well suited for battery power applications: load switching and power management, battery power circuits, and dc-dc conversions.

Features

- $-5.8 \text{ A}, -20 \text{ V}. \text{ R}_{\text{DS(ON)}} = 30 \text{ m}\Omega @ \text{V}_{\text{GS}} = -4.5 \text{ V}$ $\text{R}_{\text{DS(ON)}} = 43 \text{ m}\Omega @ \text{V}_{\text{GS}} = -2.5 \text{ V}$
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- SuperSOT TM –6 Package: Small Footprint (72% Smaller than Standard SO–8) Low Profile (1 mm Thick)
- These Devices are Pb–Free and Halide Free

ABSOLUTE MAXIMUM RATINGS

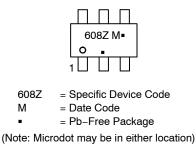
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Ratings	Unit	1	
V _{DSS}	Drain-Gate Voltage	-20	V		
V _{GSS}	Gate-Source Voltage		±12	V	
Ι _D	Drain Current – Continu – Pulsed	uous (Note 1a)	5.8 20	A	
PD	Maximum Power Dissipation	(Note 1a) (Note 1b)	1.6 0.8	W	
T _J , T _{STG}	Operating and Storage Juncti Temperature Range	on	-55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	30	°C/W

TSOT-23-6 CASE 419BL

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
FDC608PZ	TSOT-23-6 (Pb-Free/ Halide Free)	3000 / Tape & Reel
FDC608PZ-F171	TSOT-23-6 (Pb-Free/ Halide Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

FDC608PZ, FDC608PZ-F171

ELECTRICAL CHARACTERISTICS Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
OFF CHAR	OFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = -250 μ A	-20	-	-	V		
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C	-	-10	_	mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	-1	μΑ		
I _{GSS}	Gate-Body Leakage	V_{GS} = ±12 V, V_{DS} = 0 V	-	-	±10	μA		
ON CHARA	CTERISTICS (Note 2)							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \ I_D = -250 \ \mu A$	-0.4	-1.0	-1.5	V		
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C	-	3	_	mV/°C		

ΔT_{J}	Temperature Coefficient					
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -5.8 \text{ A}$	-	26	30	mΩ
		V_{GS} = –2.5 V, I_D = –5.0 A	1	38	43	
		V_{GS} = –4.5 V, I_D = –5.8 A, T_J = 125°C	1	35	-	
I _{D(on})	On-State Drain Current	V_{GS} = –4.5 V, V_{DS} = –5 V	-20	-	-	A
9FS	Forward Transconductance	V _{DS} = -10 V, I _D = -5.8 A	-	22	-	S

DYNAMIC CHARACTERISTICS

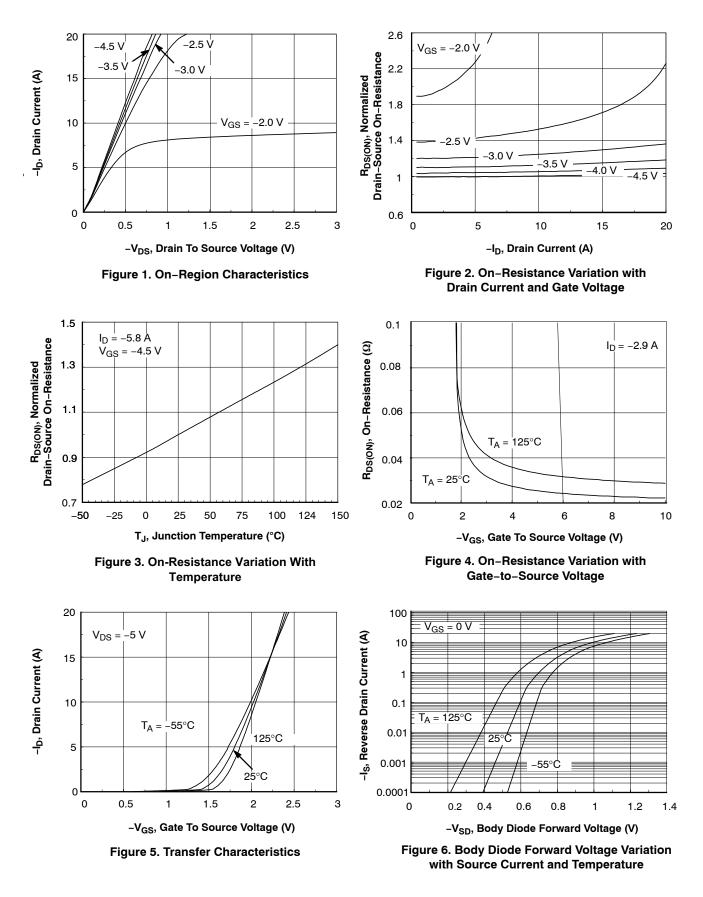
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	-	1330	-	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	-	270	1	pF
C _{rss}	Reverse Transfer Capacitance	1	-	230	-	pF
R _G	Input Capacitance	V _{GS} = 15 mV, f = 1.0 MHz	-	12	-	Ω

SWITCHING CHARACTERISTICS (Note 2)

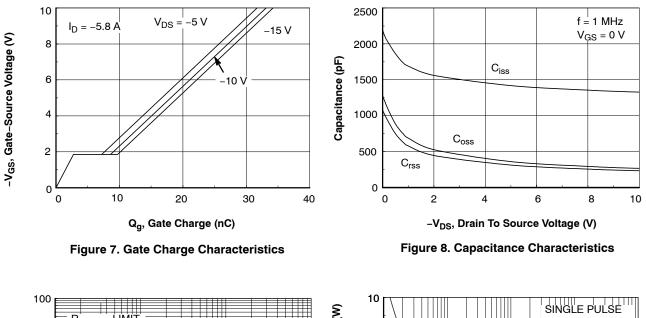
t _{d(on)}	Turn–On Delay Time	V_{DD} = -10 V, I_D = -1 A, V_{GS} = -4.5 V, R_{GEN} = 6 Ω	-	13	24	ns
tr	Turn–On Rise Time	$V_{\rm GS}$ = -4.5 V, $R_{\rm GEN}$ = 6 Ω	-	8	16	ns
t _{d(off)}	Turn–Off Delay Time		-	91	145	ns
t _f	Turn–Off Fall Time		-	60	96	ns
Qg	Total Gate Charge	$V_{DS} = -10$ V, $I_D = -5.8$ A, $V_{GS} = -4.5$ V	-	17	23	nC
Q _{gs}	Gate-Source Charge		-	3	-	nC
Q _{gd}	Gate-Drain Charge		-	6	-	nC

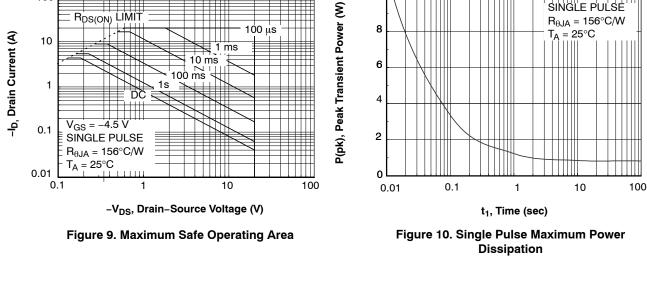
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

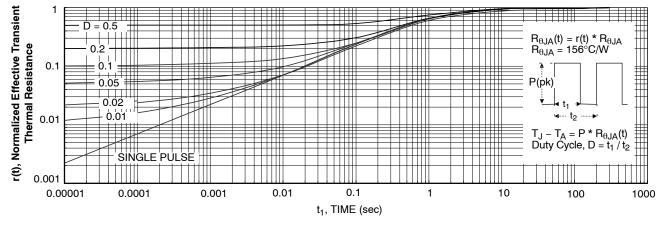
۱ _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	-1.3	А
V_{SD}	Drain-Source Diode Forward Voltage	V_{GS} = 0 V, I_S = -1.3 A (Note 2)	-	-0.7	-1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F=-5.8~A,~d_{iF}/d_t=100~A/\mu s$	_	40	60	ns
Q _{rr}	Diode Reverse Recovery Charge	I_F = –5.8 A, d_{iF}/d_t = 100 A/ μs	-	15	23	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

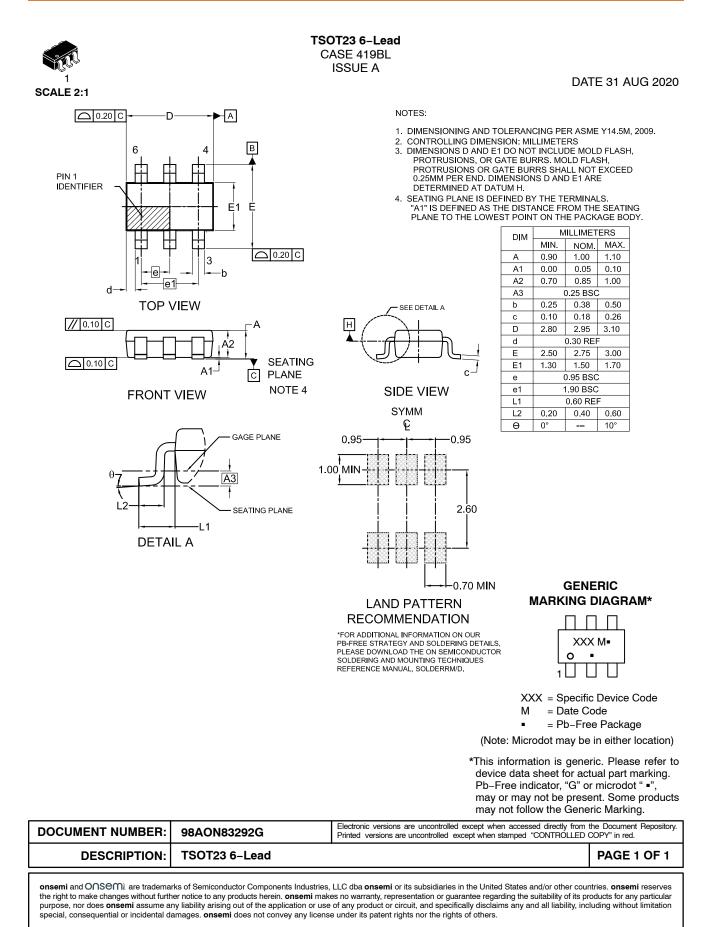
1. R_{0JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a. 78°C/W when mounted on a 1 in² pad of 2oz copper on FR-4 board.


b. 156° C/W when mounted on a minimum pad. 2. Pulse Test: Pulse Width $\leq 300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.


FDC608PZ, FDC608PZ-F171


TYPICAL CHARACTERISTICS

FDC608PZ, FDC608PZ-F171



Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>