Dual Complementary Pair Plus Inverter

The MC14007UB multipurpose device consists of three N–Channel and three P–Channel enhancement mode devices packaged to provide access to each device. These versatile parts are useful in inverter circuits, pulse–shapers, linear amplifiers, high input impedance amplifiers, threshold detectors, transmission gating, and functional gating.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4007A or CD4007UB
- This device has 2 outputs without ESD Protection. Antistatic precautions must be taken.
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

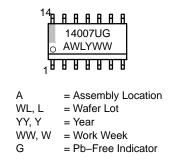
Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} +0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature (8 second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: -7.0 mW/°C from 65°C 5o 125°C.

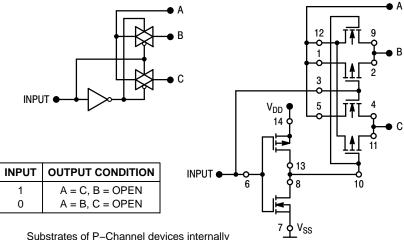
ON Semiconductor®

http://onsemi.com

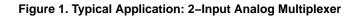


D SUFFIX CASE 751A

PIN ASSIGNMENT


D-P _B	1•	14	I V _{DD}			
S–P _B [2	13	D-P _A			
GATE _B	3	12] OUT _C			
S–N _B [4	11] S-P _C			
D-N _B	5	10] GATE _C			
GATE _A	6	9] S–N _C			
v _{ss} [7	8	D–N _A			
D = DRAIN						
S = SOURCE						

MARKING DIAGRAM



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Substrates of P–Channel devices internally connected to V_{DD} ; substrates of N–Channel devices internally connected to V_{SS} .

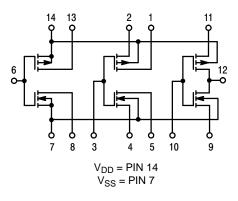
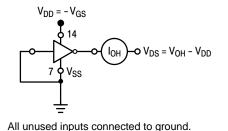
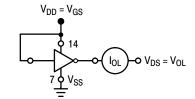


Figure 2. Schematic

				–55°C		25°C			125°C		
Symbol	Characteristic		V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
V _{OL}	Output Voltage V _{in} = V _{DD} or 0	"0" Level	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{OH}	V _{in} = 0 or V _{DD}	"1" Level	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
V _{IL}	Input Voltage (V _O = 4.5 Vdc) (V _O = 9.0 Vdc) (V _O = 13.5 Vdc)	"0" Level	5.0 10 15	- - -	1.0 2.0 2.5	- - -	2.25 4.50 6.75	1.0 2.0 2.5		1.0 2.0 2.5	Vdc
VIH	$(V_O = 0.5 \text{ Vdc})$ $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	"1" Level	5.0 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5	2.75 5.50 8.25	- - -	4.0 8.0 12.5	- - -	Vdc
I _{OH}	$\begin{array}{l} \text{Output Drive Current} \\ (\text{V}_{\text{OH}} = 2.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 4.6 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 9.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 13.5 \ \text{Vdc}) \end{array}$	Source	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-5.0 -1.0 -2.5 -10	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
I _{OL}	$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	1.0 2.5 10	- - -	0.36 0.9 2.4	- - -	mAdc
l _{in}	Input Current		15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
C _{in}	Input Capacitance (V _{in} = 0)		-	-	-	-	5.0	7.5	-	-	pF
I _{DD}	Quiescent Current (Per Package)		5.0 10 15	- - -	0.25 0.5 1.0	- - -	0.0005 0.0010 0.0015	0.25 0.5 1.0	- - -	7.5 15 30	μAdc
Ι _Τ	Total Supply Current (Notes (Dynamic plus Quiescer Per Gate) (C _L = 50 pF)		5.0 10 15		•	I _T = (1.	7 μA/kHz) f + 4 μA/kHz) f + 2 μA/kHz) f +	⊦ I _{DD} /6	•		μAdc

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at 25°C.
4. To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk where: I_T is in µA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.003.


Symbol	Characteristic	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
t _{TLH}	Output Rise Time $t_{TLH} = (1.2 \text{ ns/pF}) C_L + 30 \text{ ns}$ $t_{TLH} = (0.5 \text{ ns/pF}) C_L + 20 \text{ ns}$ $t_{TLH} = (0.4 \text{ ns/pF}) C_L + 15 \text{ ns}$	5.0 10 15	- - -	90 45 35	180 90 70	ns
t _{THL}	Output Fall Time $t_{THL} = (1.2 \text{ ns/pF}) C_L + 15 \text{ ns}$ $t_{THL} = (0.5 \text{ ns/pF}) C_L + 15 \text{ ns}$ $t_{THL} = (0.4 \text{ ns/pF}) C_L + 10 \text{ ns}$	5.0 10 15	- - -	75 40 30	150 80 60	ns
t _{PLH}	Turn–Off Delay Time $t_{PLH} = (1.5 \text{ ns/pF}) C_L + 35 \text{ ns}$ $t_{PLH} = (0.2 \text{ ns/pF}) C_L + 20 \text{ ns}$ $t_{PLH} = (0.15 \text{ ns/pF}) C_L + 17.5 \text{ ns}$	5.0 10 15	- - -	60 30 25	125 75 55	ns
t _{PHL}	Turn–On Delay Time $t_{PHL} = (1.0 \text{ ns/pF}) \text{ C}_{L} + 10 \text{ ns}$ $t_{PHL} = (0.3 \text{ ns/pF}) \text{ C}_{L} + 15 \text{ ns}$ $t_{PHL} = (0.2 \text{ ns/pF}) \text{ C}_{L} + 15 \text{ ns}$	5.0 10 15	- - -	60 30 25	125 75 55	ns

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

5. The formulas given are for the typical characteristics only. Switching specifications are for device connected as an inverter.

6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

All unused inputs connected to ground.

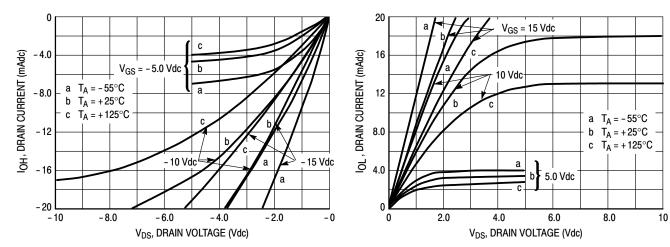
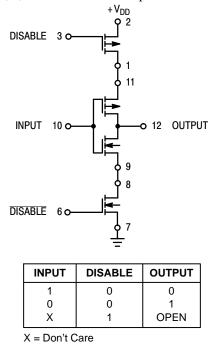
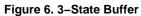
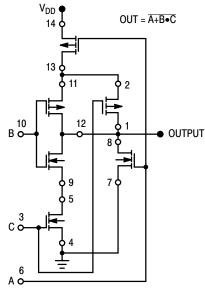


Figure 3. Typical Output Source Characteristics


These typical curves are not guarantees, but are design aids. Caution: The maximum current rating is 10 mA per pin.



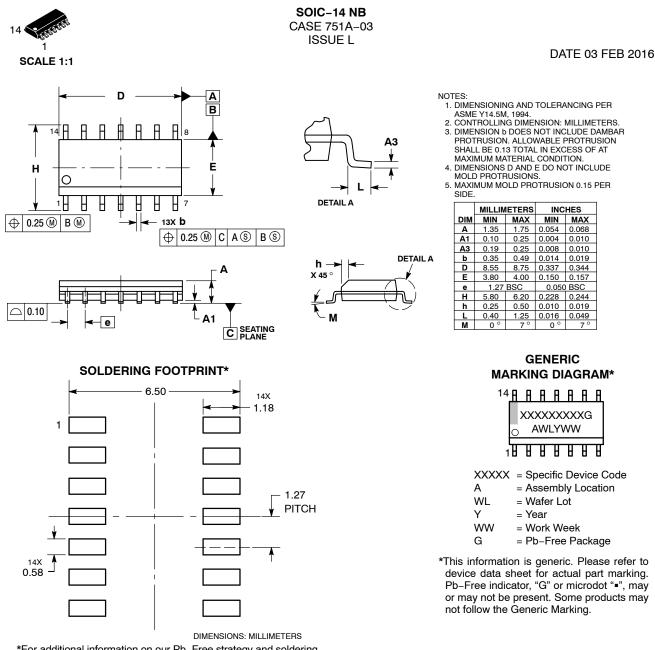

Figure 5. Switching Time and Power Dissipation Test Circuit and Waveforms

APPLICATIONS

The MC14007UB dual pair plus inverter, which has access to all its elements offers a number of unique circuit applications. Figures 1, 6, and 7 are a few examples of the device flexibility.

Substrates of P–Channel devices internally connected to V_{DD} ; Substrates of N–Channel devices internally connected to V_{SS} .

Figure 7. AOI Functions Using Tree Logic


ORDERING INFORMATION

Device	Package	Shipping [†]
MC14007UBDG	SOIC-14 (Pb-Free)	55 Units / Rail
MC14007UBDR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
NLV14007UBDR2G*	SOIC-14 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi axis me any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B	98ASB42565B Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED		
BESCHIFTION. COIC-14 NB FAGE 2 OF	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>