PZTA92T1G, NSVPZTA92T1G

High Voltage Transistor PNP Silicon

Features

- Complement to PZTA42T1G
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	V _{CEO}	-300	Vdc		
Collector-Base Voltage	V _{CBO}	-300	Vdc		
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc		
Collector Current	Ι _C	-500	mAdc		
Total Power Dissipation up to @ T _A = 25°C (Note 1)	PD	1.5	W		
Storage Temperature Range	T _{stg}	-65 to +150	°C		
Junction Temperature	TJ	150	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

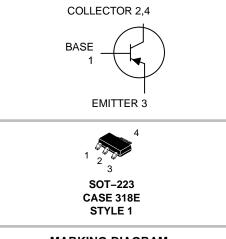
1. Device mounted on a FR-4 glass epoxy printed circuit board

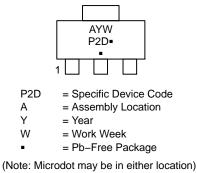
1.575 in x 1.575 in x 0.0625 in; mounting pad for the collector lead = 0.93 sq in.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	83.3	°C/W

2. Device mounted on a FR-4 glass epoxy printed circuit board


1.575 in x 1.575 in x 0.0625 in; mounting pad for the collector lead = 0.93 sq in.


ON Semiconductor®

www.onsemi.com

SOT-223 PACKAGE PNP SILICON HIGH VOLTAGE TRANSISTOR SURFACE MOUNT

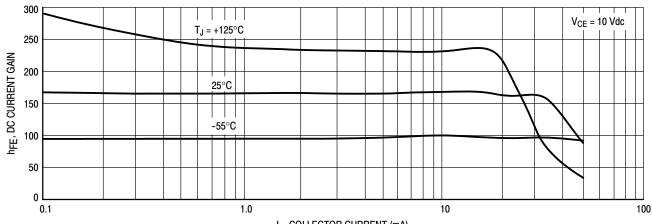
MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
PZTA92T1G, NSVPZTA92T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
NSVPZTA92T3G	SOT-223 (Pb-Free)	4,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

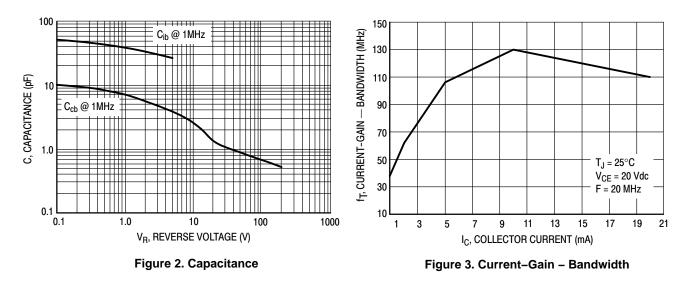
PZTA92T1G, NSVPZTA92T1G


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			·	
Collector–Emitter Breakdown Voltage (Note 3) $(I_{C} = -1.0 \text{ mAdc}, I_{B} = 0)$	V _{(BR)CEO}	-300	-	Vdc
Collector-Base Breakdown Voltage $(I_C = -100 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	-300	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = -100 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	-5.0	_	Vdc
Collector-Base Cutoff Current ($V_{CB} = -200 \text{ Vdc}, I_E = 0$)	I _{CBO}	_	-0.25	μAdc
Emitter–Base Cutoff Current ($V_{BE} = -3.0$ Vdc, $I_C = 0$)	I _{EBO}	_	-0.1	μAdc
ON CHARACTERISTICS			+	
DC Current Gain ($I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}$) ($I_C = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}$) ($I_C = -30 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}$)	h _{FE}	25 40 40		-
Saturation Voltages ($I_C = -20$ mAdc, $I_B = -2.0$ mAdc) ($I_C = -20$ mAdc, $I_B = -2.0$ mAdc)	V _{CE(sat)} V _{BE(sat)}		-0.5 -0.9	Vdc
DYNAMIC CHARACTERISTICS			•	
Collector–Base Capacitance @ f = 1.0 MHz $(V_{con} = -20) V(f_{con} = -20)$	C _{cb}	_	6.0	pF

Collector-Base Capacitance @ $f = 1.0 \text{ MHz}$ (V _{CB} = -20 Vdc, I _E = 0)	C _{cb}	-	6.0	р⊦	
Current–Gain – Bandwidth Product ($I_C = -10 \text{ mAdc}, V_{CE} = -20 \text{ Vdc}, f = 100 \text{ MHz}$)	f _T	50	_	MHz	ļ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


3. Pulse Test Conditions, $t_p = 300 \ \mu s$, $\delta 0.02$.

 $\mathsf{I}_\mathsf{C},$ COLLECTOR CURRENT (mA)

Figure 1. DC Current Gain

PZTA92T1G, NSVPZTA92T1G

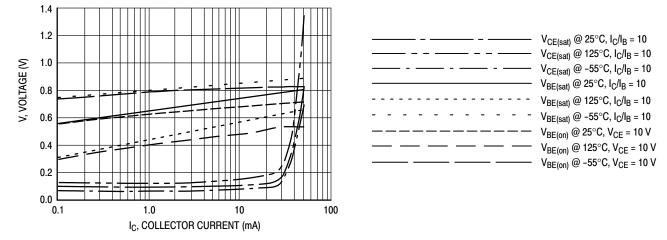
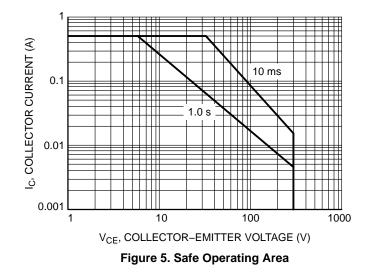
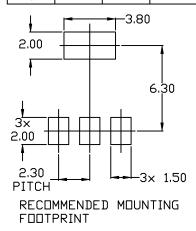



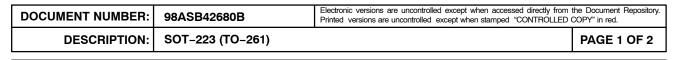
Figure 4. "ON" Voltages

onsemi

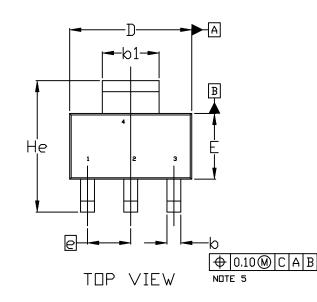
SOT-223 (TO-261) CASE 318E-04 ISSUE R

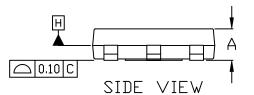
SEE DETAIL A

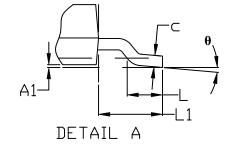

FRONT VIEW


DATE 02 OCT 2018

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS & AND &1.

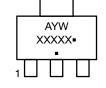

	MILLIMETERS			
DIM	MIN.	NDM.	MAX.	
A	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
с	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
e	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0*		10 °	





onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SCALE 1:1


© Semiconductor Components Industries, LLC, 2018

SOT-223 (TO-261) CASE 318E-04 **ISSUE R**

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: Pin 1. Source 2. Drain 3. Gate 4. Drain	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: Pin 1. Input 2. Ground 3. Logic 4. Ground	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	Style 12: Pin 1. Input 2. Output 3. NC 4. Output	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC **MARKING DIAGRAM***

- = Assembly Location А
- Υ = Year
- W = Work Week
- XXXXX = Specific Device Code .
- = Pb-Free Package
- (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>