LA1654C

Monolithic Linear IC Time Code Reception IC

Overview

The LA1654C time code reception IC receives long-wave time standard broadcasts (such as the Japanese JJY and German DCF77 standards) and detects and outputs the time code superposed on the long-wave signal. Applications can automatically correct their clock's time setting by using the time code received by the LA1654C. Note that the LA1654C is a bare chip product that is not packaged.

Function

• RF amplifier, rectifier, detector, time code output, and standby circuit.

Features

- Low-voltage operation (operating V_{CC} as low as 1.5V).
- Standby mode current drain less than or equal to 0.05µA. Japan : JJY 40/60kHz Germany : DCF77 77.5kHz

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		5.0	V
Allowable power dissipation	Pd max	Ta ≤ 70°C	10	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Descention	Querra had	Conditions		Ratings		1.1
Parameter	Symbol	Conditions	min	typ	max	Unit
Recommended supply voltage	V _{CC}		1.5		3.0	V
Operating supply voltage range	V _{CC} op		1.1		3.6	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Operating Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 3.0V$

* : Packaged in a VSON16 package and measured using the SON11T016-001-MF socket (Yamaichi Electronics Co., Ltd.)

Overall Characteristics

Deremator	Correctional	Oraditions		Ratings		11-14
Parameter	Symbol	Conditions	min	typ	max	Unit
Quiescent current	Icco	No input, PAD15 = 0V, PAD10 = 3V	30	37	50	μA
Standby mode current drain	ISTB	PAD15 = 3.0V			0.05	μA

AGC Amplifier Input Characteristics

Parameter	Complete	Conditions		Ratings		l la it
	Symbol	Conditions	min	typ	max	Unit
Input impedance	ZI	PAD1		800		kΩ
Input frequency range	FIN	PAD1	37.5		80.0	kHz
Minimum input voltage	V _{MIN}	PAD1 input level			1	μVrms
Maximum input voltage	V _{MAX}	PAD1 input level	100			mVrms

TCO Output Characteristics - Input signal = PAD1, fin = 40kHz, PAD10 = 3V, PAD15 = 0V

Description	Ourseland.	Conditions Ratings		Linit		
Parameter	Symbol			typ	max	Unit
High-level output voltage	V _{OH}	PAD11 output level	2.9		3.0	V
Low-level output voltage	V _{OL}	PAD11 output level	0		0.1	V
Output pulse width	T500	V_{IN} = 0 to 100dBµV, AM modulation	400	520	600	ms
(500 ms input)		(1Hz square wave, duty = 50%, 10:1 modulation)				
Output pulse width	T800	V_{IN} = 0 to 100dBµV, AM modulation	600	730	800	ms
(800 ms input)		(1Hz square wave, duty = 80%, 10:1 modulation)				
Output pulse width	T200	V_{IN} = 0 to 100dBµV, AM modulation	200	300	400	ms
(200 ms input)		(1Hz square wave, duty = 20%, 10:1 modulation)				

STB Control Characteristics

Parameter	Symbol	Conditions		Ratings		Linit
	Symbol	Conditions	min	typ	max	Unit
Standby on voltage	V _{SH}	PAD15 DC voltage	2.9		3.0	V
Standby off voltage	V _{SL}	PAD15 DC voltage	0		0.1	V
High-level pin input current	ISH	PAD15 = 3V			0.1	μA
Low-level pin input current	I _{SL}	PAD15 = 0V			0.3	μA

HOLD Control Characteristics - PAD15 = 0V

Parameter	Cumbal	Conditions		Ratings		Linit
	Symbol	Conditions	min	typ	max	Unit
Hold on voltage	V _{HL}	PAD10 DC voltage	0		0.1	V
Hold off voltage	V _{HH}	PAD10 DC voltage	2.9		3.0	V
High-level pin input current	Інн	PAD10 = 3V			0.1	μA
Low-level pin input current	IHL	PAD10 = 0V			0.3	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Chip Specifications

Parameter	Conditions	Ratings	Unit
Chip size		1.26×2.00	mm ²
Chip thickness		330(±20)	μm
Pad size		127.5×127.5	μm²
Pad opening		105×105	μm²

PAD Coordinates

PAD	X-Axis	Y-Axis	PAD	X-Axis	Y-Axis
P1	902	151	TEST PAD	776.5	1849
P2	1109	299.5	P9	368.5	1849
P3A	1109	717.5	P10	151	1747
P3B	1109	508.5	P11	151	1600
P4	1109	926.5	P12	151	1453
P5	1109	1073.5	P13	151	547
P6A	1109	1282.5	P14	151	400
P6B	1109	1491.5	P15	151	253
P7	1109	1700.5	P16	368.5	151
P8	926	1849			

Notes

1. The left upper corner of the Pad Layout Diagram on the following page is the origin, the X axis increases to the right and the Y axis increases in the downward direction.

2. Units : μm

3. The pad coordinates give the coordinate values of the center of the pads.

4. Both of each of the pairs P3A/P3B (V_CC) and P6A/P6B (ground) must be bonded.

5. The test pads must not be connected (NC).

Pad Layout Diagram

PCA00620

Block Diagram

PCA00621

Test Circuit Diagram

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LA1654C-X1	Chip (Pb-Free)	2250 / Waffle Pack

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

PCA00622