<u>Onsemí</u>,

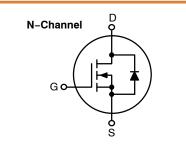
MOSFET – N-Channel, UniFET™, FRFET[®]

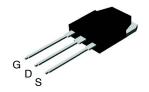
400 V, 23 A, 190 m Ω

FDA24N40F

Description

UniFET MOSFET is **onsemi**'s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET MOSFET has been enhanced by lifetime control. Its trr is less than 100 ns and the reverse dv/dt immunity is 15 V/ns while normal planar MOSFETs have over 200 ns and 4.5 V/ns respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.


Features


- $R_{DS(on)} = 150 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 11.5 \text{ A}$
- Low Gate Charge (Typ. 46 nC)
- Low C_{rss} (Typ. 25 pF)
- 100% Avalanche Tested
- RoHS Compliant

Applications

- Uninterruptible Power Supply
- AC-DC Power Supply


V _{DS}	R _{DS(ON)} MAX	I _D MAX	
400 V	190 mΩ @ 10 V	23 A	

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ

MARKING DIAGRAM

FDA24N40F	= Specific Device Code
A	= Assembly Site
YWW	= Date Code (Year & Work Week)
ZZ	= Assembly Lot Number

ORDERING INFORMATION

Device	i usinge s	
FDA24N40F	TO-3P-3LD	450 Units / Tube

MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Symbol	Paramete	r	Value	Unit	
V _{DSS}	Drain to Source Voltage	400	V		
V _{GSS}	Gate to Source Voltage	Gate to Source Voltage			
I _D	Drain Current	– Continuous (T _C = 25°C)	23	Α	
		– Continuous (T _C = 100°C)	13.8		
I _{DM}		- Pulsed (Note 1)	92		
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	le Pulsed Avalanche Energy (Note 2)			
I _{AR}	Avalanche Current (Note 1)	23	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1)		23.5	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5	V/ns	
PD	Power Dissipation	$T_{C} = 25^{\circ}C$	235	W	
		-Derate above = 25°C	1.8	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	•	–55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" fr	om Case for 5 Seconds	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. L = 4.5 mH, I_{AS} = 23 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C. 3. $I_{SD} \le$ 23 A, di/dt \le 200 A/µs, $V_{DD} \le$ BV_{DSS}, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.53	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

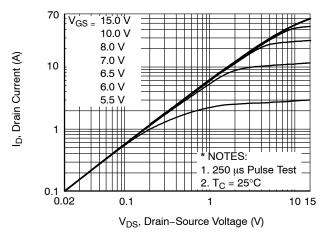
Parameter	Test Conditions	Min	Тур	Max	Unit
CTERISTICS	-	-	-		
Drain to Source Breakdown Voltage	I_D = 250 $\mu A,V_{GS}$ = 0 V, T_J = 25°C	400	_	-	V
Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25° C	-	0.5	-	V/°C
Zero Gate Voltage Drain Current	$V_{DS} = 400 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	10	μA
	V_{DS} = 320 V, T_{C} = 125°C	-	-	100	
Gate to Body Leakage Current	V_{GS} = ±30 V, V_{DS} = 0 V	-	_	±100	nA
	CTERISTICS Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	CTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V, \ T_J = 25^{\circ}\text{C}$ Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}, \ referenced to 25^{\circ}\text{C}$ Zero Gate Voltage Drain Current $V_{DS} = 400 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = 320 \ V, \ T_C = 125^{\circ}\text{C}$	CTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V, \ T_J = 25^{\circ}\text{C}$ 400Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}, \ referenced to 25^{\circ}\text{C}$ -Zero Gate Voltage Drain Current $V_{DS} = 400 \ V, \ V_{GS} = 0 \ V$ - $V_{DS} = 320 \ V, \ T_C = 125^{\circ}\text{C}$ -	CTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu A, V_{GS} = 0 \ V, T_J = 25^{\circ}C$ 400-Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu A, referenced to 25^{\circ}C$ -0.5Zero Gate Voltage Drain Current $V_{DS} = 400 \ V, V_{GS} = 0 \ V$ $V_{DS} = 320 \ V, T_C = 125^{\circ}C$	CTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu$ A, $V_{GS} = 0 \ V$, $T_J = 25^{\circ}$ C 400 $ -$ Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu$ A, referenced to 25° C $ 0.5$ $-$ Zero Gate Voltage Drain Current $V_{DS} = 400 \ V$, $V_{GS} = 0 \ V$ $ 10$ $V_{DS} = 320 \ V$, $T_C = 125^{\circ}$ C $ 100$

V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μ A	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 11.5 A	-	0.15	0.19	Ω
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 11.5 A	-	29	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz	-	2280	3030	pF
C _{oss}	Output Capacitance		-	370	490	pF
C _{rss}	Reverse Transfer Capacitance		-	25	38	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 320 \text{ V}, \text{ I}_{D} = 23 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	46	60	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	13	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	18	-	nC

SWITCHING CHARACTERISTICS


t _{d(on)}	Turn-On Delay Time	$V_{DS} = 200 \text{ V}, I_D = 23 \text{ A}, V_{GS} = 10 \text{ V},$	-	40	90	ns
t _r	Turn–On Rise Time	R _G = 25 Ω (Note 4)	-	92	195	ns
t _{d(off)}	Turn-Off Delay Time		-	120	250	ns
t _f	Turn-Off Fall Time		-	75	160	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

I _S	Maximum Continuous Drain to Source Di	Maximum Continuous Drain to Source Diode Forward Current		-	23	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	92	А
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 23 \text{ A}$	-	-	1.5	V
t _{rr}	Reverse Recovery Time	V_{GS} = 0 V, I_{SD} = 23 A, dI_F/dt = 100 A/ μs	-	110	-	ns
Q _{rr}	Reverse Recovery Charge		-	0.3	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

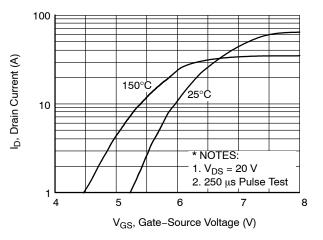


Figure 2. Transfer Characteristics

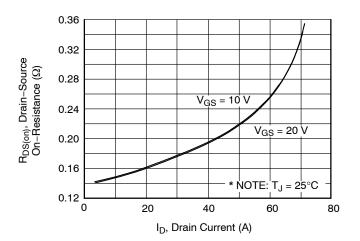


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

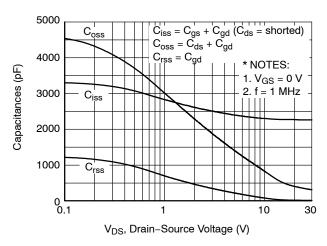


Figure 5. Capacitance Characteristics

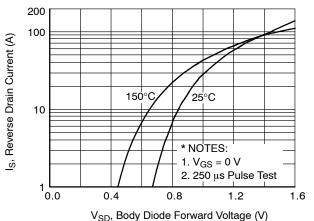


Figure 4. Body Diode Forward Voltage Variation vs. Source Current And Temperature

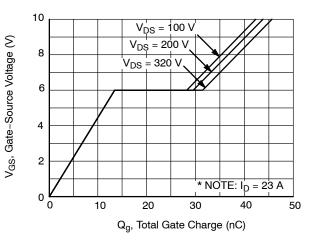


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

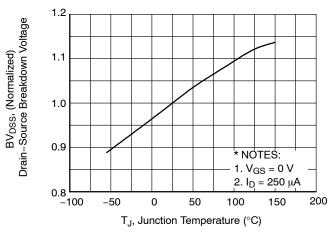


Figure 7. Breakdown Voltage Variation vs. Temperature

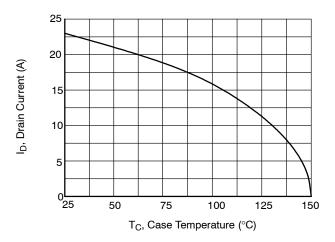


Figure 9. Maximum Drain Current vs. Case Temperature

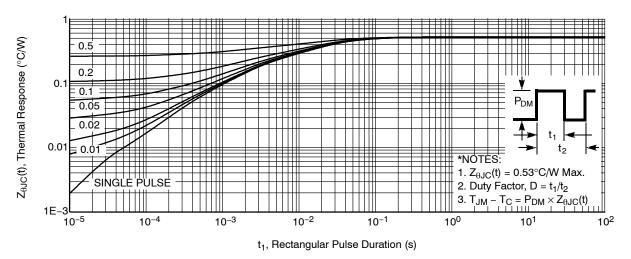


Figure 10. Transient Thermal Response Curve

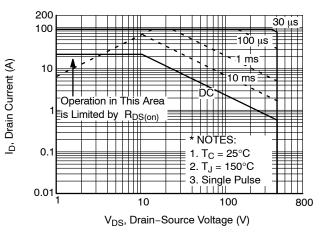
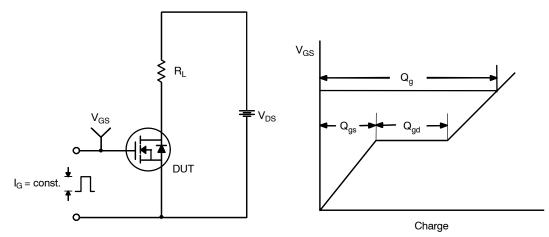



Figure 8. Maximum Safe Operating Area

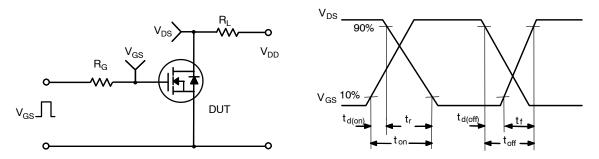


Figure 12. Resistive Switching Test Circuit & Waveforms

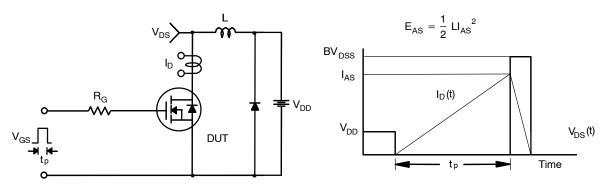


Figure 13. Unclamped Inductive Switching Test Circuit & Waveforms

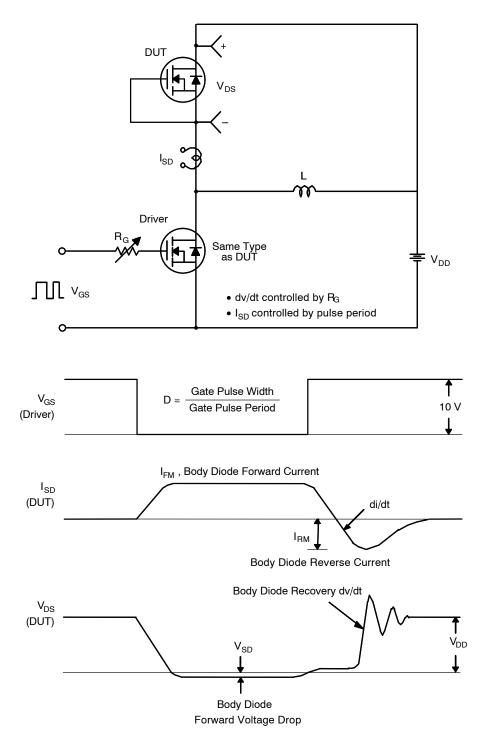
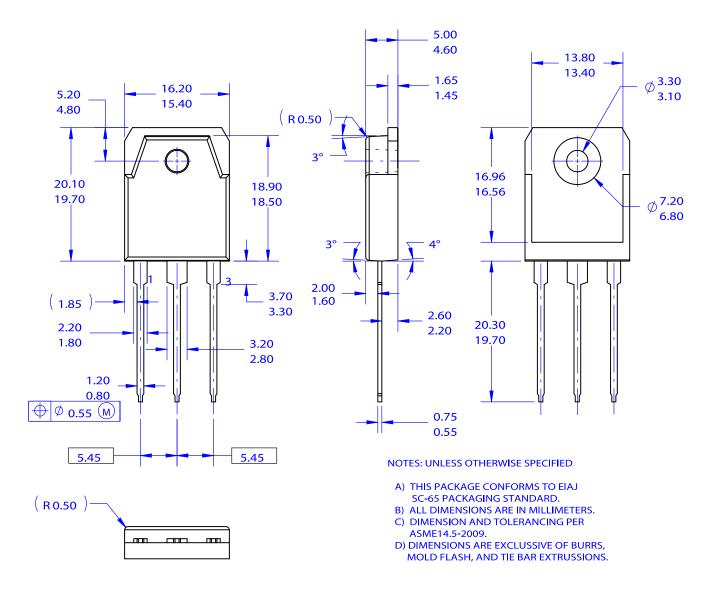


Figure 14. Peak Diode Recovery dv/dt Test Circuit & Waveforms

UniFET is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


FRFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ

ISSUE O

DATE 31 OCT 2016

DOCUMENT NUMBER:	98AON13862G	CON13862G Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-3P-3LD / EIAJ SC-65,	3LD / EIAJ SC-65, ISOLATED PA				
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>