

JN Semiconductor®

To k are more about Old Semiconductor, please visit our website at www.onsemi.com

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

March 2025

FDB031N08

N 沟道 PowerTrench[®] MOSFET 75 V, 235 A, 3.1 m Ω

特性

- $R_{DS(on)}$ = 2.4 m Ω (Typ.)@V_{GS} = 10 V, I_D = 75 A
- 快速开关速度
- 低栅极电荷
- 高性能沟道技术可实现极低的 R_{DS(on)}
- 高功率和高电流处理能力
- 符合 RoHS 标准

说明

此 N 沟道 MOSFET 采用飞兆半导体先进的 PowerTrench l 工艺 生产,这一先进工艺是专为最大限度地降低导通电阻并保持卓越 开关性能而定制的。

应用

- 用于 ATX/ 服务器 / 电信 'SU ' 门步弘
- 电池保护电路
- 电机驱デ和イ 物电源

MOSFET 「大獅宅」 25°C 除非另有说明

符号	10,		FDB031N08	单位	
Vr	写 核 以电压			75	V
SS	· 飞一源极电压		±20	V	
	漏极电流 连续			235	Α
I _D				165	Α
				120	Α
I _{DM}	漏极电流	- 脉冲	(说明 1)	940	Α
EAS	单脉冲雪崩能量		(说明 2)	1995	mJ
uv/c't	二极管恢复 dv (dt 峰值		(说明 3)	5.5	V/ns
D	74-45	(T _C = 25°C)		375	W
P_{D}	功耗 - 降低至 25°C 以上			2.5	W/°C
T _J , T _{STG}	工作和存储温度范围			-55 至 +175	°C
T _L	用于焊接的最大引线温度,距离外壳 1/8",持续 5 秒			300	°C

热性能

符号	参数	FDB031N08	单位
$R_{\theta JC}$	结至外壳热阻最大值。	0.4	°C/W
$R_{\theta JA}$	结至环境热阻最大值。	62.5	C/VV

封装标识与定购信息

器件编号	顶标	封装	包装方法	卷尺寸	带宽	数量
FDB031N08	FDB031N08	D ² -PAK	卷带	330 mm	24 mm	800 个

电气特性 TC = 25℃ 除非另有说明。

符号	参数	测试条件	最小值	典型值	最大值	单位
关断特性						
BV _{DSS}	漏极一源极击穿电压	$I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}, T_C = 25^{\circ}\text{C}$	75	-	-	V
ΔBV _{DSS} / ΔT _J	击穿电压温度系数	I _D = 250 μA,温度参考 25°C	-	0.05	-	V/°C
1	零栅极电压漏极电流	V _{DS} = 75 V, V _{GS} = 0 V	-		1	μА
IDSS	令	$V_{DS} = 75 \text{ V}, T_{C} = 150^{\circ}\text{C}$	-		500	μΑ
I_{GSS}	栅极 - 体漏电流	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		-	±100	nA

导通特性

V _{GS(th)}	栅极阈值电压	V _{GS} = V _{DS} , I _D = 250 μA	∠.5	3.5 4.5	V
R _{DS(on)}	漏极至源极静态导通电阻	$V_{GS} = 10 \text{ V}, I_D = 75 \text{ A}$		2.4 3.1	mΩ
g _{FS}	正向跨导	V _{DS} = 10 V, I _D = 75		130 -	S

动态特性

C _{iss}	输入电容	V = 25) / 3 V	O-	1,169	15160	pF
Coss	输出电容	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1360	1810	pF
C _{rss}	反向传输电容			595	800	pF
Q _{g(tot)}	10 V 的栅极电荷总量	$V_{DS} = \epsilon V, I_D = 7.5 \lambda,$	O .	169	220	nC
Q_{gs}	栅极 - 源极栅极电荷	3S = 10 V	_0	60	-	nC
Q_{gd}	栅极 - 漏极 " 米勒 " 电荷	(说明 4)		47	-	nC

开关特性

t _{d(on)}	导通延迟时门	-	230	470	ns
t _r	开通 ' ~'·时i	-	191	392	ns
t _{d(off)}	デ _{ル延迟} 時间	-	335	680	ns
t _f	关 .+円」 (说明	4) -	121	252	ns

湯」-ル、≒ 1€1111年

**						
Is	漏心 - 源极二及管最大正向连续电流		-	-	235	Α
I _{SM}	漏极。派放二极管量大正可脉冲电流	*	-	-	940	Α
V_{SD}	清极 - 源极二极管正向电压	$V_{GS} = 0 \text{ V}, I_{SD} = 75 \text{ A}$	-	-	1.3	V
t _{rr}	ら向恢复时间	$V_{GS} = 0 \text{ V}, I_{SD} = 75 \text{ A},$	-	53	-	ns
Q_{rr}	反向恢复电荷	$dI_F/dt = 100 A/\mu s$	-	77	-	nC

注意:

- $3.1_{SD} \le 75$ A,di/dt ≤ 200 A/µs, $V_{DD} \le BV_{DSS}$,开始 T_J = 25° C。 4. 本质上独立于工作温度的典型特性。

典型性能特征

图 1. 导通区域特性

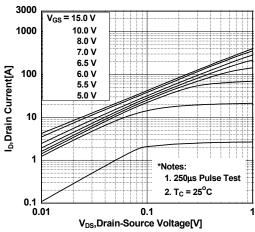


图 2. 传输特性

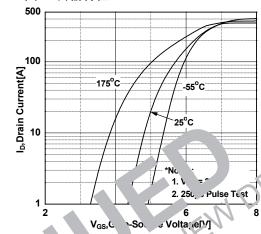
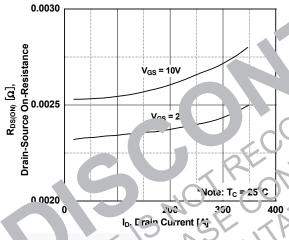
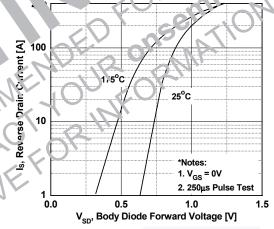




图 3. 导通电阻变化 vs. 漏极电流和栅极电压

J. 电容特性

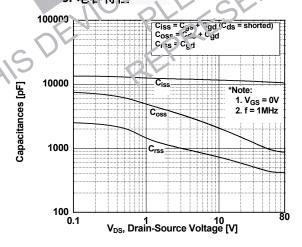
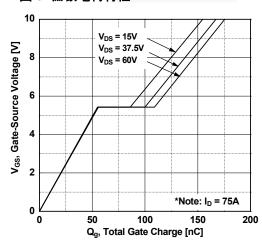
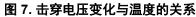




图 6. 栅极电荷特性

典型性能特征 (接上页)

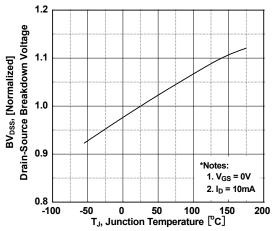


图 8. 导通电阻变化与温度的关系

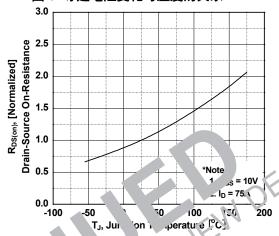
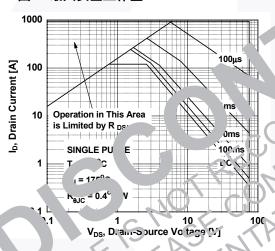



图 9. 最大安全工作区

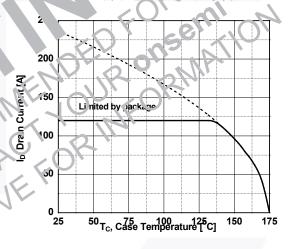
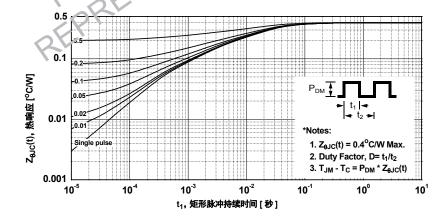



图 11. 瞬态热响应曲线

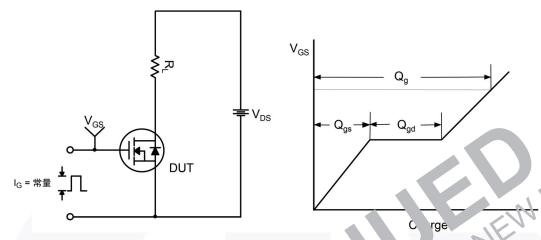


图 12. 栅极电荷测试广略与、形

图 13. 阻性升关测试电路与波形

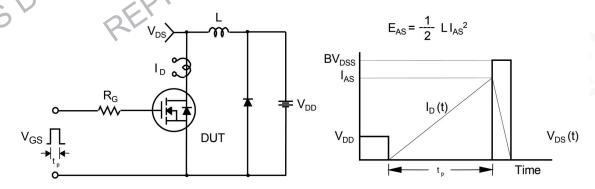
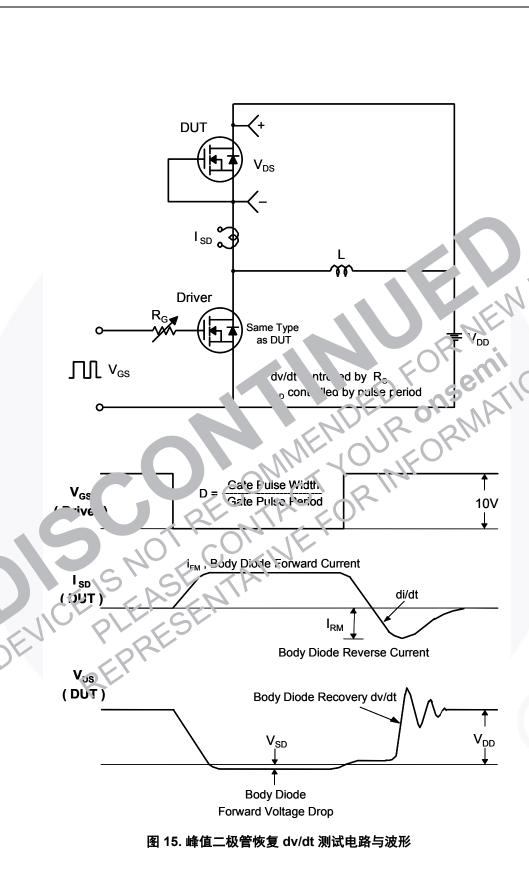
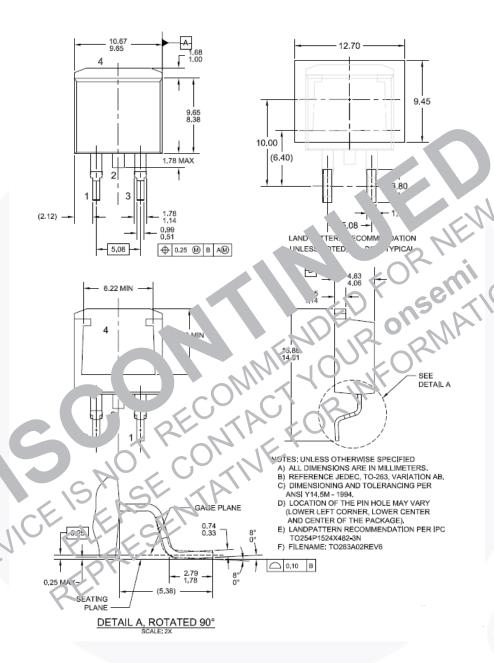




图 14. 非箝位感性开关测试电路与波形

机械尺寸

图 16. TO263 (D²PAK), 模塑, 2 引脚, 表面贴装

封装图纸作为一项服务,提供给考虑飞兆半导体元件的客户。具体参数可能会有变化,且不会做出相应通知。请注意图纸上的版本和/或日期,并联系飞兆半导体代表核实或获得最新版本。封装规格并不扩大飞兆公司全球范围内的条款与条件,尤其是其中涉及飞兆公司产品保修的部分。

随时访问飞兆半导体在线封装网页,可以获取最新的封装图纸:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT263-0R2

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PESTM AX-CAP® FRFET® BitSiC™ Global Power ResourceSM Build it Now™ GreenBridge™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ G*max*™ GTO™ CTI ™

Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Marking Small Speakers Sound Louder Dual Cool™

EcoSPARK® and Better™ MegaBuck™ EfficentMax™ ESBC™ MICROCOUPLER™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

FAST® FastvCore™ FETBench™ FPS™

PowerTrench® PowerXS™

Programmable Active Droop™

QFET QS™ Quiet Series™ RapidConfigure™

> Saving our world, 1mW/W/kW at a * SignalWise™ SmartMax™

SMART START™ Solutions for Your Soccess™

STEALTH™ SuperFFT® SuperS St rSC 3ul 301 Supre 756 SvncFL

Sync-Lock™ SYSTEM ®* TinyBoost[®] TinyBuck[®]

TinyCalc™ TinyLogic[®] TINY · OWE √PWM™ Ti. Vire™ Tra. C™

TriFa. ,ect™ TRUECURRENT , Des™

DITC Ulti a FRFET™ UniFFT™ VCX™ Mxe' /II' uaiV \ oragePlus?

*Trademarks of System General Corporation, used under rirchild Sumicond

MicroFET™

MicroPak™

MicroPak2™ MillerDrive™

MotionMax™

OPTOLOGIC®

OPTOPLANAR®

mWSaver®

OptoHiT™

DISCLAIMER

O N 'E CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE FAIRCHILD SEMICONDUCTOR RESERVES ≟ RIGh S.N., ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY DESIT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. RELIABILITY, FUNCTION, OR DESIGN. FA CHILD D PRODUCT OR CIRCUIT DESCRIBE "EITHER THESE SPECIFICATIONS DO NC EXPAND THEREIN, WHICH COVERS THE E PRODUCTS. J OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY TED

FAIRCHILD'S PROL OTS NO LEXPRESS WE TEN OV. OF NORIZED FOR USE AS CIPITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE .Jv. OF FAIRCHILD SEMICONDUCTUR CORPORTION.

As used here in:

- su, rt a res stems are devices or systems which, (a) are ntended sur, all implant in or the body or (a) support or sustain life, d (c) where failure to perform when properly used in accordance with in juction for use provided in the landing, can be masonably ex, + to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTER SITING POLIC!

Fairchild Se riconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website,

www.Fa childs-nil.com, under Sales Syppio.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their palto. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Tairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 166

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative