

N-Channel Shielded Gate POWERTRENCH® MOSFET

100 V, 1.7 mΩ, 268 A FDB1D7N10CL7

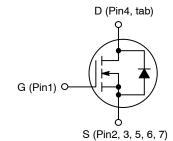
Description

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

- Max $R_{DS(on)} = 1.75 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 100 \text{ A}$
- Max $R_{DS(on)} = 1.7 \text{ m}\Omega$ at $V_{GS} = 12 \text{ V}$, $I_D = 100 \text{ A}$
- Max $R_{DS(on)} = 1.65 \text{ m}\Omega$ at $V_{GS} = 15 \text{ V}$, $I_D = 100 \text{ A}$
- Max $R_{DS(on)} = 4.4 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 63 \text{ A}$
- 50% Lower Qrr than Other MOSFET Suppliers
- Lowers Switching Noise/EMI
- ESD Protection Level: HBM > 4 kV, CDM > 2 kV
- MSL1 Robust Package Design
- 100% UIL Tested

Applications


- Industrial Motor Drive
- Industrial Power Supply
- Industrial Automation
- Battery Operated Tools
- Battery Protection
- Solar Inverters
- UPS and Energy Inverters
- Energy Storage
- Load Switch

MAXIMUM RATINGS (T_C = 25°C, Unless otherwise specified)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	100	V
V _{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current	268	Α
	Continuous ($T_C = 25^{\circ}C$) (Note 5) Continuous ($T_C = 100^{\circ}C$) (Note 5)	190	
	Pulsed (Note 4)	1390	
E _{AS}	Single Pulsed Avalanche Energy (Note 3)	595	mJ
P _D	Power Dissipation	250	W
	$T_C = 25^{\circ}C$ $T_A = 25^{\circ}C$ (Note 1a)	3.8	
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DS}	I _D MAX	r _{DS(on)} MAX
100 V	268 A	1.7 mΩ

N-Channel MOSFET

- 1. Gate
- Source
 Source
- 4. Drain
- 5. Source 6. Source
- 7. Source

D2PAK7 (TO-263 7 LD) CASE 418AY

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FDB1D7N10CL7 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ hetaJC}$	JC Thermal Resistance, Junction to Case (Note 1)		°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	40	

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Symbol	Parameter	Test Cond	ditions	Min	Тур	Max	Unit
OFF CHARACT	TERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	ID = 250 μA, VGS = 0 V		100	_	_	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	ID = 250 μA, referen	nced to 25°C	-	57	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current Zero Gate Voltage Drain Current	VDS = 80 V, VGS = 0) V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	Vgs = ±20 V, Vps =	0 V	-	-	±100	nA
ON CHARACTI	ERISTICS	•			•	•	u
V _{GS(th)}	Gate to Source Threshold Voltage	VGS = VDS, ID = 700) μΑ	2.0	3.1	4.0	V
$V_{GS(th)}/\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	ID = 700 μA, referen	nced to 25°C	-	-9	_	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	VGS = 10 V, ID = 10	0 A	-	1.5	1.75	mΩ
		VGS = 12 V, ID = 10	0 A	-	1.4	1.7	1
		VGS = 15 V, ID = 10	0 A	-	1.33	1.65	
		VGS = 6 V, ID = 63 A		-	2.2	4.4	1
		VGS = 10 V, ID = 10	VGS = 10 V, ID = 100 A, TJ= 150°C		2.65	3.1	
9 _{FS}	Forward Transconductance	VDS = 5 V, ID = 100	A	-	237	-	S
OYNAMIC CHA	RACTERISTICS						
C _{iss}	Input Capacitance	VDS = 50 V, VGS = 0 V, f = 1 MHz		-	8285	11600	pF
C _{oss}	Output Capacitance			-	5025	7035	pF
C _{rss}	Reverse Transfer Capacitance			_	50	80	pF
R_g	Gate Resistance			0.1	0.8	1.6	Ω
WITCHING CI	HARACTERISTICS				_	_	
t _{d(on)}	Turn-On Delay Time	V _{DD} = 50 V, I _D = 10	00 A,	-	39	63	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V, R}_{GEN} = 10 \text{ V}$	= 0.73	-	33	53	ns
t _{d(off)}	Turn-Off Delay Time			-	85	136	ns
t _f	Fall Time			-	36	58	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V		-	116	163	nC
Qg	Total Gate Charge	V _{GS} = 0 V to 6 V	VDD = 50 V,	-	74	104	nC
Q _{gs}	Gate to Source Gate Charge		J ID = 100 A	-	37	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	24	-	nC
Q _{oss}	Output Charge	VDD = 50 V, VGS = 0 V			333		nC
SOURCE-DRA	IN DIODE CHARACTERISTICS						
I _S	Continuous Drain to Source Diode Forwa	s Drain to Source Diode Forward Current			-	268	Α
I _{SM}	Pulsed Drain to Source Diode Forward C	urrent		-	-	1390	Α
V_{SD}	Source to Drain Diode Forward Voltage	VGS = 0 V, IS = 100	A (Note 2)	-	0.9	1.2	V

ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
SOURCE-DRAIN DIODE CHARACTERISTICS						
t _{rr}	Reverse Recovery Time	IF = 50 A, di/dt = 300 A/μs	-	63	101	ns
Q_{rr}	Reverse Recovery Charge		-	186	298	nC
t _{rr}	Reverse Recovery Time	IF = 50 A, di/dt = 1000 A/μs	-	82	132	ns
Q _{rr}	Reverse Recovery Charge		-	869	1390	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a) 40°C/W when mounted on a 1 in2 pad of 2 oz copper.
- b) 62.5°C/W when mounted on a minimum pad of 2 oz copper.
 2. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %.
- 3. E_{AS} of 595 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 63 A, V_{DD} = 90 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 91 A. 4. Pulsed Id please refer to Figure "Forward Bias Safe Operating Area" for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB1D7N10CL7	FDB1D7N10CL7	D2-PAK-7L	330 mm	24 mm	800 Units

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

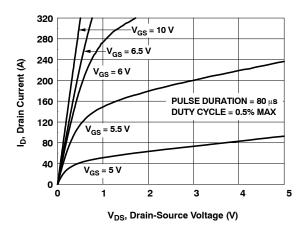


Figure 1. On-Region Characteristics

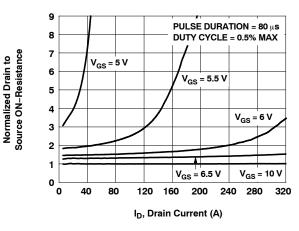


Figure 2. Normalized On-Resistance vs. Drain **Current and Gate Voltage**

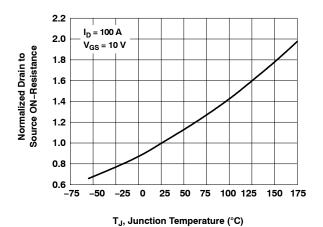
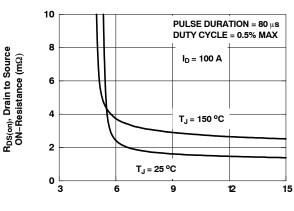



Figure 3. Normalized On-Resistance

V_{GS}, Gate to Source Voltage (V)

Figure 4. On-Resistance vs. Gate to Source Voltage

vs. Junction Temperature

Figure 5. Transfer Characteristics

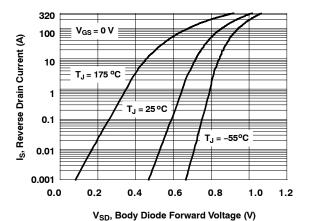


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (Continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

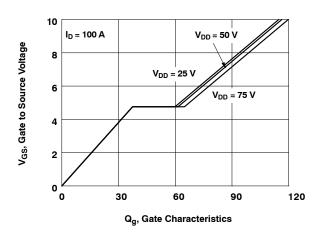


Figure 7. Gate Charge Characteristics

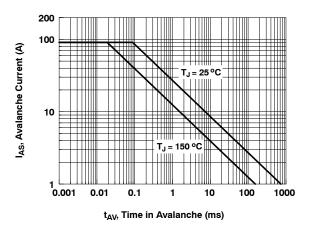


Figure 9. Unclamped Inductive Switching Capability

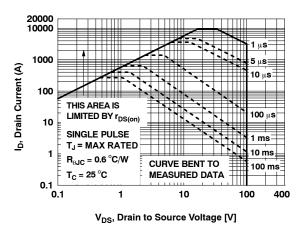
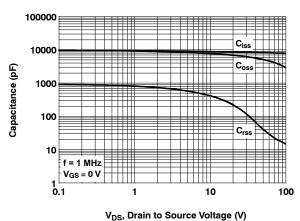



Figure 11. Forward Bias Safe Operating Area

VDS, Drain to Source voltage (V)

Figure 8. Capacitance vs. Drain to Source Voltage

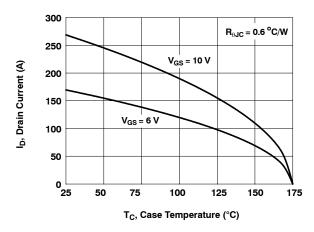


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

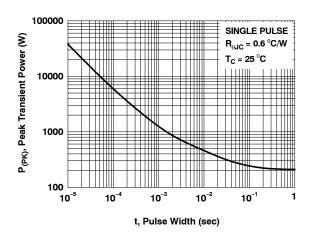
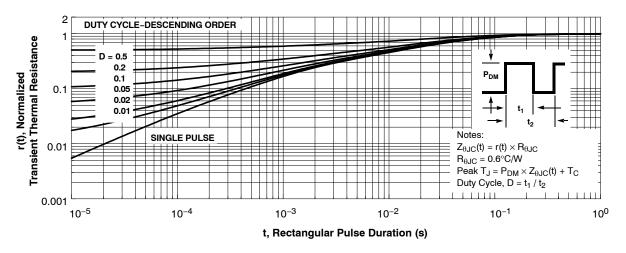
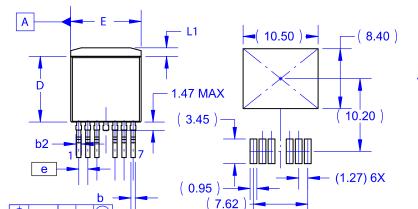


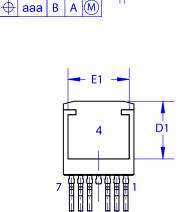
Figure 12. Single Pulse Maximum Power Dissipation

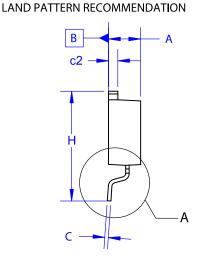
TYPICAL CHARACTERISTICS (Continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$




Figure 13. Normalized Max Junction to Case Transient Thermal Response Curve


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


D2PAK7 (TO-263 7 LD) CASE 418AY ISSUE C

DATE 15 JUL 2019

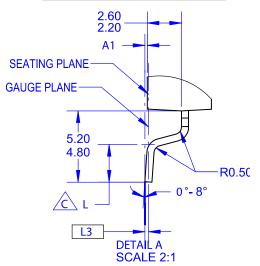
(M)

NOTES:

A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.

OUT OF JEDEC STANDARD VALUE.
D. DIMENSION AND TOLERANCE AS PER ASME
Y14.5-1994.
E. DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH AND TIE BAR PROTRUSIONS.
F. LAND PATTERN RECOMMENDATION PER IPC.
TO127P1524X465-8N.

DIM	MIL	LIMETER	S
DIM	MIN	NOM	MAX
Α	4.30	4.50	4.70
A 1	0.00	0.10	0.20
b2	0.70	0.80	0.90
b	0.50	0.60	0.70
С	0.40	0.50	0.60
c2	1.20	1.30	1.40
D	9.00	9.20	9.40
D1	7.70	~	~
E	9.70	9.90	10.20
E1	8.38	8.58	8.78
е	~	1.27	~
Н	15.10	15.40	15.70
L	2.44	2.64	2.84
L1	1.00	1.20	1.40
L3	~	0.25	~
aaa	~	~	0.25


GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location

= Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13798G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D2PAK7 (TO-263 7 LD)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales