OOSEMI MOSFET – N-Channel, POWERTRENCH®

General Description

This N–Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.

Features

• 2.6 A, 100 V

 $R_{DS(ON)} = 125 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$

 $R_{\text{DS(ON)}} = 135 \text{ m}\Omega @ \text{V}_{\text{GS}} = 6 \text{ V}$

- High Performance Trench Technology for Extremely Low RDS(ON)
- Low Gate Charge (14 nC Typical)
- High Power and Current Handling Capability
- Fast Switching Speed
- This is a Pb–Free Device

Applications

• DC/DC Converter

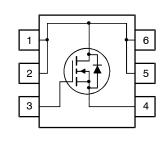
ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)						
Symbol	Pa	Ratings	Unit			
V _{DSS}	Drain-Source Volta	100	V			
V _{GSS}	Gate-Source Voltag	±20	V			
I _D	Drain Current	rrent Continuous (Note 1a)		А		
		Pulsed	20	А		
E _{AS}	Single Pulse Avala	37	mJ			
PD	Maximum Power Dissipation	(Note 1a)	1.6	W		
		(Note 1b)	0.8	W		
T _J , T _{STG}	Operating and Store	-55 to +150	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Reja	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W
Rejc	Thermal Resistance, Junction-to-Case (Note 1)	30	°C/W

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	125 mΩ @ 10 V	2.6 A
	135 mΩ @ 6 V	


TSOT23 6-Lead (SUPERSOT [™] -6) CASE 419BL

XXX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location)

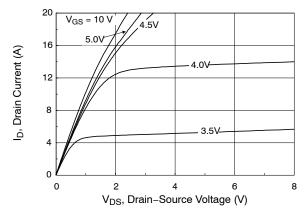
ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

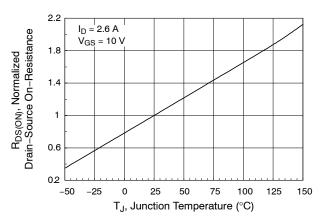
FDC3612

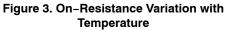
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
RAIN-SOU	IRCE AVALANCHE RATINGS (Note 2)					
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 50 V, I_D = 2.6 A	-	-	90	mJ
I _{AR}	Drain-Source Avalanche Current		-	-	2.6	А
FF CHARA	CTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A	100	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	99	_	mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	10	μA
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	-100	nA
N CHARAG	CTERISTICS (Note 2)					•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2	2.3	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{II}}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	-6	-	mV/°C
R _{DS(on)}	Static Drain–Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}$ $V_{GS} = 6 \text{ V}, I_D = 2.5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}, T_J = 125^{\circ}\text{C}$		86 91 157	125 135 240	mΩ
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	10	-	-	А
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 2.6 A	-	10	-	S
OYNAMIC (CHARACTERISTICS	•	•	-	-	-
C _{iss}	Input Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	-	660	-	pF
Coss	Output Capacitance		-	55	-	pF
C _{rss}	Reverse Transfer Capacitance		-	40	-	pF
Rg	Gate Resistance		0.1	1.4	3.0	Ω
WITCHING	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 1 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	6	11	ns
t _r	Turn–On Rise Time	$R_{GEN} = 6 \Omega$	-	3.5	7	ns
t _{d(off)}	Turn–Off Delay Time		-	23	37	ns
t _f	Turn–Off Fall Time		-	3.7	7.4	ns
Qg	Total Gate Charge	V_{DS} = 50 V, I _D = 2.6 A, V _{GS} = 10 V	-	14	20	nC
Q _{gs}	Gate-Source Charge		-	2.3	-	nC
Q _{gd}	Gate-Drain Charge		-	3.6	-	nC
	IRCE DIODE CHARACTERISTICS AND I	MAXIMUM RATINGS		-	•	
۱ _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.3 A (Note 2)	-	0.76	1.2	V
		$I_F = 2.6 \text{ A}, d_{IF}/d_t = 100 \text{ A}/\mu \text{s} \text{ (Note 2)}$	1		1	1
t _{rr}	Diode Reverse Recovery Time	$I_F = 2.6 \text{ A}, d_{IF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 2)	-	31	-	ns


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a.) 78 °C/W when mounted on a 1in² pad of 2oz copper on FR-4 board b.) 156 °C/W when mounted on a minimum pad


2. Pulse Test: Pulse Width \leq 300 µs, Duty cycle \leq 2.0 % 3. E_{AS} of 37 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 5 A, V_{DD} = 100 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 11 A.


FDC3612

TYPICAL CHARACTERISTICS

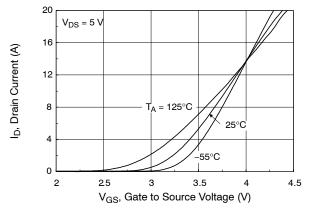


Figure 5. Transfer Characteristics

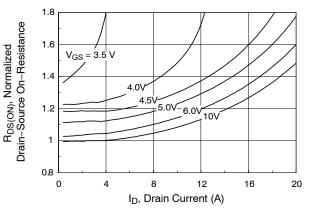


Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

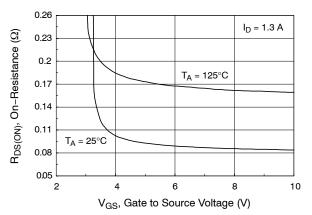


Figure 4. On–Resistance Variation with Gate–to–Source Voltage

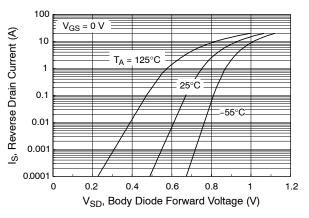


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDC3612

TYPICAL ELECTRICAL CHARACTERISTICS (continued)

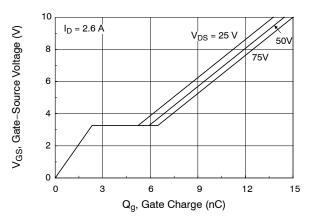


Figure 7. Gate Charge Characteristics

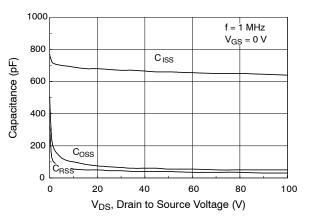


Figure 8. Capacitance Characteristics

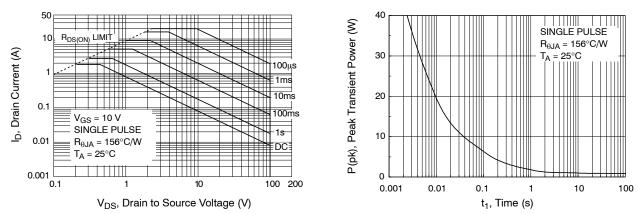
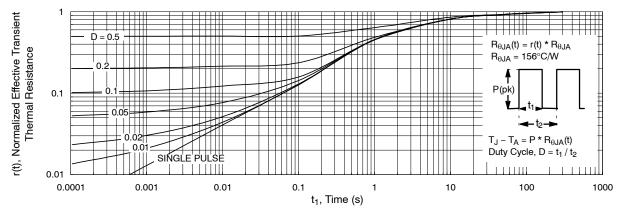
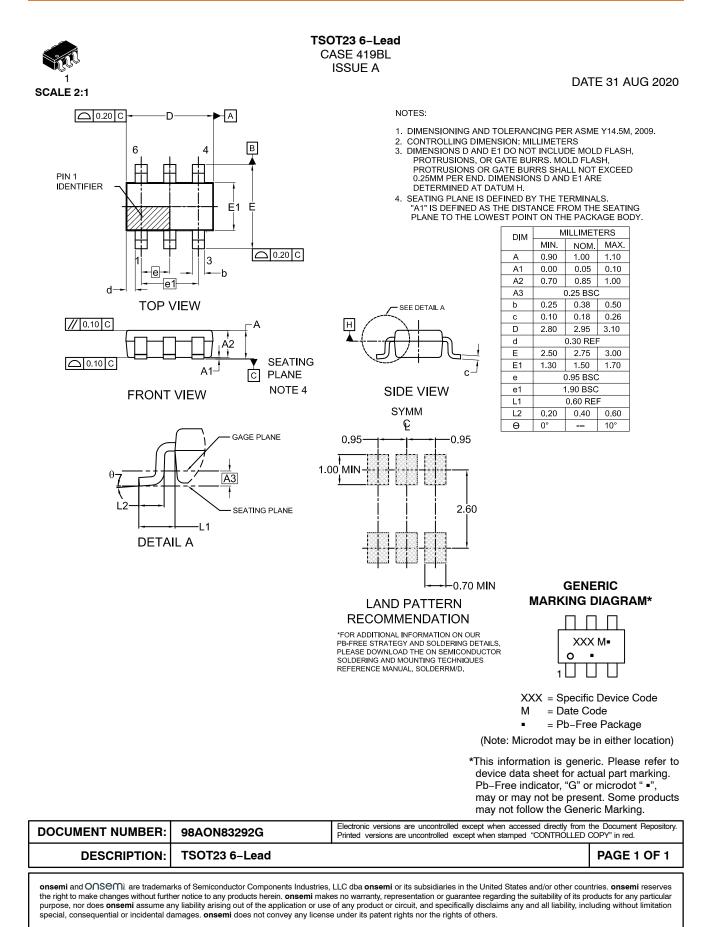



Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

Figure 11. Transient Thermal Response Curve (Note: Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.)

ORDERING INFORMATION


Device	Device Marking	Package Type	Shipping [†]
FDC3612	.362	TSOT-23-6 (Pb-free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SUPERSOT is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>