MOSFET – P-Channel, POWERTRENCH® ## 30 V # FDD6685 ## **General Description** This P-Channel MOSFET is a rugged gate version of **onsemi**'s advanced POWERTRENCH process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5 V - 2.5 V). #### **Features** - -40 A, -30 V - $R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ - $R_{DS(ON)} = 30 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$ - Fast Switching Speed - High Performance Trench Technology for Extremely Low R_{DS(ON)} - High Power and Current Handling Capability - Qualified to AEC-Q101 - This Device is Pb-Free and are RoHS Compliant ## ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, Unless otherwise noted) | Symbol | Parameter | | Ratings | Units | |-----------------------------------|---|----------------------------------|----------------|-------| | V_{DSS} | Drain-Source Voltage | | -30 | V | | V_{GSS} | Gate-Source Voltage | | ±25 | V | | I _D | Continuous
Drain Current | @T _C = 25°C (Note 5) | -40 | Α | | | | @T _A = 25°C (Note 3a) | -11 | | | | | Pulsed, PW ≤ 100 μs
(Note 3b) | -100 | | | P_{D} | Power | (Note 3) | 52 | W | | Single | Dissipation for
Single | (Note 3a) | 3.8 | | | | Operation | (Note 3b) | 1.6 | | | T _J , T _{STG} | Operating and Storage Junction
Temperature Range | | –55 to
+175 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Symbol | Parameter | Ratings | Unit | |-----------------|--|---------|------| | $R_{ heta JC}$ | Thermal Resistance, Junction-to-Case (Note 3) | 2.9 | °C/W | | $R_{\theta JA}$ | Thermal Resistance,
Junction-to-Ambient (Note 3a) | 40 | °C/W | | $R_{\theta JA}$ | Thermal Resistance,
Junction-to-Ambient (Note 3b) | 96 | °C/W | DPAK3 (TO-252 3 LD) CASE 369AS #### **MARKING DIAGRAM** \$Y = onsemi Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code FDD6685 = Specific Device Code ## **ORDERING INFORMATION** See detailed ordering and shipping information on page 6 of this data sheet. ## **ELECTRICAL CHARACTERISTICS** ($T_A = 25$ °C unless otherwise noted) | Symbol | Parameter | Test Conditions | Min | Тур | Max | Unit | |--------------------------------------|--|--|----------|----------------|----------|-------------| | DRAIN-SOURC | CE AVALANCHE RATINGS (NOTE 4) | | | | | | | E _{AS} | Single Pulse Drain-Source
Avalanche Energy | I _D = -11 A | _ | 42 | - | mJ | | I _{AS} | Maximum Drain-Source Avalanche Current | | - | -11 | - | Α | | OFF CHARACT | ERISTICS | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | V _{GS} = 0 V, I _D = -250 μA | -30 | _ | - | V | | $\Delta BV_{DSS} / \Delta T_{J}$ | Breakdown Voltage Temperature
Coefficient | I _D = –250 μA, Referenced to 25°C | - | -24 | - | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = -24 V, V _{GS} = 0 V | _ | _ | -1 | μΑ | | I _{GSS} | Gate-Body Leakage | $V_{GS} = \pm 25V, V_{DS} = 0 V$ | _ | _ | ±100 | nA | | ON CHARACTE | ERISTICS | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_D = -250 \mu A$ | -1 | -1.8 | -3 | V | | $\Delta V_{GS(th)}$ / ΔT_{J} | Gate Threshold Voltage Temperature Coefficient | I_D = -250 μ A, Referenced to 25°C | - | 5 | - | mV/°C | | R _{DS(on)} | Static Drain–Source
On–Resistance | $V_{GS} = -10 \text{ V}, I_D = -11 \text{ A}$
$V_{GS} = -4.5 \text{ V}, I_D = -9 \text{ A}$
$V_{GS} = -10 \text{ V}, I_D = -11 \text{ A}, T_J = 125^{\circ}\text{C}$ | _ | 14
21
20 | 20
30 | mΩ | | I _{D(on)} | On-State Drain Current | $V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$ | -20 | _ | - | Α | | 9 _{FS} | Forward Transconductance | V _{DS} = -5 V, I _D = -11 A | _ | 26 | - | S | | DYNAMIC CHA | RACTERISTICS | • | • | | | | | C _{iss} | Input Capacitance | $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ | _ | 1715 | - | pF | | C _{oss} | Output Capacitance | 7 | - | 440 | - | pF | | C _{rss} | Reverse Transfer Capacitance | 7 | | 225 | - | pF | | R_{G} | Gate Resistance | V _{GS} = 15 mV, f = 1.0 MHz | _ | 3.6 | - | Ω | | SWITCHING CH | HARACTERISTICS | • | • | | | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = -15 \text{ V}, I_D = -1 \text{ A}, V_{GS} = -10 \text{ V},$ | _ | 17 | 31 | ns | | t _r | Turn-On Rise Time | $R_{GEN} = 6 \Omega$ | - | 11 | 21 | ns | | t _{d(off)} | Turn-Off Delay Time | 7 | | 43 | 68 | ns | | t _f | Turn–Off Fall Time | 7 | _ | 21 | 34 | ns | | Qg | Total Gate Charge | $V_{DS} = -15V$, $I_D = -11$ A, $V_{GS} = -5$ V | _ | 17 | 24 | nC | | Q _{gs} | Gate-Source Charge | 1 | _ | 9 | - | nC | | Q _{gd} | Gate-Drain Charge | 1 | | 4 | - | nC | | | CE DIODE CHARACTERISTICS AND M | AXIMUM RATINGS | - | - | - | - | | V _{SD} | Drain-Source Diode Forward Voltage | V _{GS} = 0 V, I _S = -3.2 A (Note 4) | _ | -0.8 | -1.2 | V | | T _{rr} | Diode Reverse Recovery Time | I _F = -11 A, dI _F /dt = 100 A/μs | - | 26 | - | ns | | Q _{rr} | Diode Reverse Recovery Charge | 1 | _ | 13 | _ | nC | | | , , | I | <u> </u> | <u> </u> | L | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### NOTES: - 1. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. - 2. All **onsemi** products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. - 3. $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. - 4. Pulse Test: Pulse Width < 300 $\mu\text{s},$ Duty Cycle < 2.0% - $\sqrt{\frac{r_D}{R_{DS(ON)}}}$ where P_D is maximum power dissipation at T_C = 25°C and R_{DS(on)} is at T_{J(max)} and V_{GS} = 10 V. 6. Starting T_J = 25°C, L = 0.69 mH, I_{AS} = -11 A 5. Maximum current is calculated as: #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. On–Resistance Variation with Drain Current and Gate Voltage Figure 3. On-Resistance Variation with Temperature Figure 4. On-Resistance Variation with Gate-to-Source Voltage Figure 5. Transfer Charactersistics -V_{SD}, Body Diode Forward Voltage [V] Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature ## TYPICAL CHARACTERISTICS (continued) Figure 9. Maximum Safe Operating Area 1.00 V_{DS}, Drain-Source Voltage [V] 10.00 0.10 0.01 Figure 10. Single Pulse Minimum Power Dissipation t₁, Time [sec] 10 100 1000 100.00 0.01 0.1 Figure 11. Transient Thermal Response Curve - NOTES: 7. Thermal characterization performed using the conditions described in Note 3b. - 8. Transient thermal response will change depending on the circuit board design. ## PACKAGE MARKING AND ORDERING INFORMATION | Part Number | Device | Reel Size | Tape Width | Shipping [†] | |-------------|---------|-----------|------------|-----------------------| | FDD6685 | FDD6685 | 13" | 16 mm | 2,500 Tape & Reels | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>. POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. #### DPAK3 6.10x6.54x2.29, 4.57P CASE 369AS **ISSUE B** **DATE 20 DEC 2023** - NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE F, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER - D) A - F) - DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2018. SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED CORNERS OR EDGE PROTRUSION. FOR DIGDE PRODUCTS, L4 IS 0.25 MM MAX PLASTIC BODY STUB WITHOUT CENTER LEAD. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD T0228P991X239-3N. | DIM | MILLIME LESS | | | | | |-----|--------------|------|-------|--|--| | DIN | MIN. N□M. | | MAX. | | | | Α | 2.18 | 2.29 | 2.39 | | | | A1 | 0.00 | - | 0.127 | | | | b | 0.64 | 0.77 | 0.89 | | | | b2 | 0.76 | 0.95 | 1.14 | | | | b3 | 5.21 | 5.34 | 5.46 | | | | C | 0.45 | 0.53 | 0.61 | | | | c2 | 0.45 | 0.52 | 0.58 | | | | D | 5.97 | 6.10 | 6.22 | | | | D1 | 5.21 | | | | | | E | 6.35 | 6.54 | 6.73 | | | | E1 | 4.32 | | | | | | е | 2.286 BSC | | | | | | e1 | 4.572 BSC | | | | | | Н | 9.40 | 9,91 | 10.41 | | | | L | 1.40 | 1.59 | 1.78 | | | | L1 | 2.90 REF | | | | | | L2 | 0.51 BSC | | | | | | L3 | 0.89 | 1.08 | 1.27 | | | | L4 | | | 1.02 | | | θ MILLIMETEDS #### LAND PATTERN RECOMMENDATION *FOR ADDITIONAL INFORMATION ON DUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. ## **GENERIC MARKING DIAGRAM*** XXXXXX XXXXXX AYWWZZ *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. XXXX = Specific Device Code = Assembly Location Α = Year WW = Work Week ZZ = Assembly Lot Code **DOCUMENT NUMBER:** 98AON13810G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** DPAK3 6.10x6.54x2.29, 4.57P **PAGE 1 OF 1** onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales