ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$

FDD86580-F085

N-Channel PowerTrench ${ }^{\circledR}$ MOSFET

60 V, 50 A, $10 \mathrm{~m} \Omega$

Features

- Typical $\mathrm{R}_{\mathrm{DS}(o n)}=7.8 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$
- Typical $\mathrm{Q}_{\mathrm{g} \text { (tot) }}=20 \mathrm{nC}$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive Engine Control
- PowerTrain Management

G

- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter		Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain-to-Source Voltage		60	V
$\mathrm{V}_{G S}$	Gate-to-Source Voltage		± 20	V
${ }_{\text {I }}$	Drain Current - Continuous (VGS=10) (Note 1)	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	50	A
	Pulsed Drain Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	See Figure 4	
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy	(Note 2)	24	mJ
P_{D}	Power Dissipation		75	W
	Derate Above $25^{\circ} \mathrm{C}$		0.5	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature		-55 to +175	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {日JC }}$	Thermal Resistance, Junction to Case		2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {日JA }}$	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	52	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:
1: Current is limited by bondwire configuration.
2: Starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=30 \mu \mathrm{H}, \mathrm{I}_{\mathrm{AS}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=60 \mathrm{~V}$ during inductor charging and $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ during time in avalanche.
3: $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design, while $R_{\theta J A}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2 zz copper.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD86580	FDD86580-F085	D-PAK(TO-252)	$13 "$	16 mm	2500 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units

Off Characteristics

B VDSs	Drain-to-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		60	-	-	V
Idss	Drain-to-Source Leakage Current	$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{G S}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$ (Note 4)	-	-	1	mA
IGSS	Gate-to-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}$	$=250 \mu \mathrm{~A}$	2.0	3.6	4.2	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain to Source On Resistance	$\begin{aligned} & I_{D}=50 \mathrm{~A}, \\ & V_{G S}=10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	7.8	10	$\mathrm{m} \Omega$
			$\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$ (Note 4)	-	15.2	19	$\mathrm{m} \Omega$

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=30 \mathrm{~V}, V_{G S}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$		-	1430	-	pF
Coss	Output Capacitance			-	440	-	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			-	25	-	pF
R_{g}	Gate Resistance	$\mathrm{V}_{\mathrm{GS}}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		-	1.8	-	Ω
$\mathrm{Q}_{\mathrm{g} \text { (ToT) }}$	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0$ to 10 V	$\begin{aligned} & V_{D D}=30 V \\ & I_{D}=50 A \end{aligned}$	-	20	30	nC
$Q_{g(t h)}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0$ to 2 V		-	3	-	nC
Q_{gs}	Gate-to-Source Gate Charge			-	9	-	nC
$Q_{\text {gd }}$	Gate-to-Drain "Miller" Charge			-	4	-	nC

Switching Characteristics

$\mathrm{t}_{\text {on }}$	Turn-On Time	$\begin{aligned} & V_{D D}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	-	-	34	ns
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay		-	12	-	ns
t_{r}	Rise Time		-	11	-	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay		-	15	-	ns
t_{f}	Fall Time		-	5	-	ns
$\mathrm{t}_{\text {off }}$	Turn-Off Time		-	-	30	ns

Drain-Source Diode Characteristics

V_{SD}	Source-to-Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1.2	V
t_{rr}	Reverse-Recovery Time	$\mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}$,	-	41	61	ns
Q_{rr}	Reverse-Recovery Charge	$\mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	30	45	nC

Note:
4: The maximum value is specified by design at $\mathrm{T}_{J}=175^{\circ} \mathrm{C}$. Product is not tested to this condition in production.

Typical Characteristics

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Saturation Characteristics

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

Figure 8. Forward Diode Characteristics

Figure 10. Saturation Characteristics

Typical Characteristics

Figure 11. $\mathrm{R}_{\text {DSoN }}$ vs. Gate Voltage

Figure 13. Normalized Gate Threshold Voltage vs. Temperature

Figure 15. Capacitance vs. Drain to Source Voltage

Figure 12. Normalized R $_{\text {DSON }}$ vs. Junction Temperature

Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Figure 16. Gate Charge vs. Gate to Source Voltage

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

