

MOSFET – POWERTRENCH[®], 20 V Complementary

N-Channel: 20 V, 3.7 A, 68 m Ω P-Channel: -20 V, -3.1 A, 95 m Ω

FDMA1032CZ

General Description

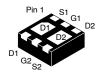
This device is designed specifically as a single package solution for a DC/DC "Switching" MOSFET in cellular handset and other ultra-portable applications. It features an independent N-Channel & P-Channel MOSFET with low on-state resistance for minimum conduction losses. The gate charge of each MOSFET is also minimized to allow high frequency switching directly from the controlling device. The MicroFET™ 2x2 package offers exceptional thermal performance for its physical size and is well suited to switching applications.

Features

Q1: N-Channel

- $R_{DS(on)} = 68 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$
- $R_{DS(on)} = 86 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$

Q2: P-Channel


- $R_{DS(on)} = 95 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$
- $R_{DS(on)} = 141 \text{ m}\Omega$ at $V_{GS} = -2.5 \text{ V}$
- Low Profile 0.8 mm Maximum In the New Package MicroFET 2x2 mm
- HBM ESD Protection Level > 2 kV (Note 3)
- Free from Halogenated Compounds and Antimony Oxides
- This Device is Pb-Free, Halide Free and is RoHS Compliant

N-Channel

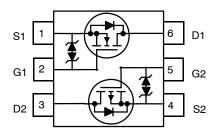
V _{DS} MAX	R _{DS(on)}	I _D MAX
20 V	68 mΩ @ 4.5 V	3.7 A
	86 mΩ @ 2.5 V	

P-Channel

V _{DS} MAX	R _{DS(on)}	I _D MAX
-20 V	95 mΩ @ -4.5 V	-3.1 A
	141 mΩ @ –2.5 V	

WDFN6 2x2, 0.65P (MicroFET) CASE 511DA

MARKING DIAGRAM


&Z = Assembly Plant Code

&2 = 2-Digit Date Code

&K = 2-Digits Lot Run Traceability Code

032 = Device Code

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMA1032CZ	WDFN6 (Pb-Free, Halide Free)	3000 / Tape & Reel

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parar	Q1	Q2	Unit	
V_{DS}	Drain-Source Voltage	20	-20	٧	
V _{GS}	Gate-Source Voltage	±12	±12	V	
I _D	Drain Current	Continuous (Note 1a)	3.7	-3.1	Α
		Pulsed	6	-6	
P _D	Power Dissipation for Single Operation	(Note 1a)	1.4		W
		(Note 1b)	0	.7	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	86 (Single Operation)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1b)	173 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1c)	69 (Dual Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1d)	151 (Dual Operation)	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter Test Conditions		Туре	Min	Тур	Max	Unit
OFF CHAR	OFF CHARACTERISTICS						
BV _{DSS}	$\begin{array}{ccc} \text{Drain-Source Breakdown} & \text{I}_D = 250 \; \mu\text{A}, \; \text{V}_{GS} = 0 \; \text{V} \\ \text{Voltage} & \text{I}_D = -250 \; \mu\text{A}, \; \text{V}_{GS} = 0 \; \text{V} \end{array}$		Q1 Q2	20 -20	- -	- -	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25°C I_D = -250 μA, referenced to 25°C		- -	15 -12	- -	mV/°C
I _{DSS}			Q1 Q2	-	- -	1 -1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$	All	-	_	±10	μΑ
ON CHARA	CTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$\begin{split} I_D &= 250 \; \mu A, V_{DS} = V_{GS} \\ I_D &= -250 \; \mu A, V_{DS} = V_{GS} \end{split}$	Q1 Q2	0.6 -0.6	1.0 -1.0	1.5 –1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25°C I_D = -250 μA, referenced to 25°C	Q1 Q2	- -	-4 4	- -	mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 3.3 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}, T_J = 125^{\circ}\text{C}$	Q1		37 50 53	68 86 90	mΩ
		$\begin{aligned} &V_{GS} = -4.5 \text{ V, } I_D = -3.1 \text{ A} \\ &V_{GS} = -2.5 \text{ V, } I_D = -2.5 \text{ A} \\ &V_{GS} = -4.5 \text{ V, } I_D = -3.1 \text{ A, } T_J = 125^{\circ}\text{C} \end{aligned}$	Q2	- - -	60 88 87	95 141 140	
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V, } I_D = 3.7 \text{ A}$ $V_{DS} = -10 \text{ V, } I_D = -3.1 \text{ A}$	Q1 Q2	-	16 –11	- -	S
DYNAMIC CHARACTERISTICS							
C _{iss}	Input Capacitance	Q1 V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2	- -	340 540	- -	pF
C _{oss}	Output Capacitance	Q2 V _{DS} = -10 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2	-	80 120	- -	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2	- -	60 100	- -	pF

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Unit
SWITCHIN	G CHARACTERISTICS (Note 2)						
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 10 V, I _D = 1 A	Q1 Q2	-	8 13	16 24	ns
t _r	Turn-On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$ Q2	Q1 Q2	- -	8 11	16 20	ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A}$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	Q1 Q2	-	14 37	26 59	ns
t _f	Turn-Off Fall Time		Q1 Q2	-	3 36	6 58	ns
Q_g	Total Gate Charge	Q1 V _{DS} = 10 V, I _D = 3.7 A, V _{GS} = 4.5 V	Q1 Q2	- -	4 7	6 10	nC
Q_{gs}	Gate-Source Charge	Q2 $V_{DS} = -10 \text{ V}, I_D = -3.1 \text{ A}, V_{GS} = -4.5 \text{ V}$	Q1 Q2	-	0.7 1.1	- -	nC
Q_{gd}	Gate-Drain Charge		Q1 Q2	-	1.1 2.4	- -	nC
DRAIN-SO	URCE DIODE CHARACTERISTICS	AND MAXIMUM RATINGS					
I _S	Maximum Continuous Source-Drain Diode Forward Current		Q1 Q2	- -	- -	1.1 –1.1	Α
V_{SD}	Source-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.1 A (Note 2) V _{GS} = 0 V, I _S = -1.1 A (Note 2)	Q1 Q2	-	0.7 -0.8	1.2 –1.2	V
t _{rr}	Diode Reverse Recovery Time	Q1 $I_F = 3.7 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	Q1 Q2	- -	11 25	_ _	ns
Qrr	Diode Reverse Recovery Charge	02	Q1	_	2	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $I_F = -3.1 \text{ A}, dI_F/dt = 100 \text{ A}/\mu\text{s}$

- R_{θJA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θJA} is determined by the user's board design.
 - a. $R_{\theta JA} = 86^{\circ}$ C/W when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For single operation.
 - b. $R_{\theta JA} = 173^{\circ}$ C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - c. $R_{0,A} = 69^{\circ}$ C/W when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB. For dual operation.
 - d. $R_{\theta,JA} = 151^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper. For dual operation.

a. 86°C/W when mounted on a 1 in² pad of 2 oz copper.

b. 173°C/W when mounted on a minimum pad of 2 oz copper.

c. 69°C/W when mounted on a 1 in² pad of 2 oz copper.

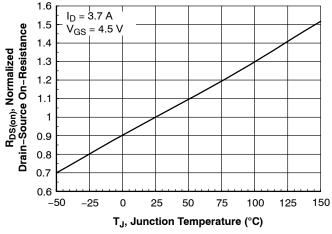
Q2

9

 d. 151°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS Q1 (N-Channel)



R_{DS(on)}, Normalized Drain-Source On-Resistance 1.8 1.6 2.5 V 1.4 3.0 V 1.2 3.5 V 4.5 V 4.0 V 8.0 2 3 5 6 ID, Drain Current (A)

V_{GS} = 2.0 V

Figure 1. On-Region Characteristics

Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

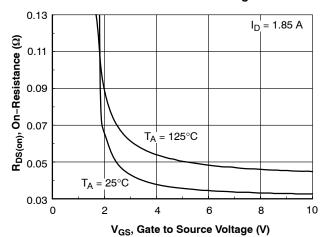
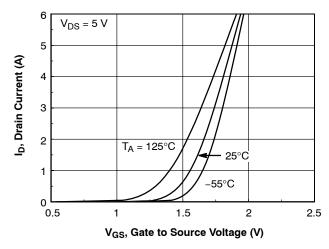



Figure 3. On–Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Gate-to-Source Voltage

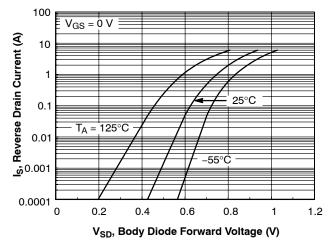


Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS Q1 (N-Channel) (continued)

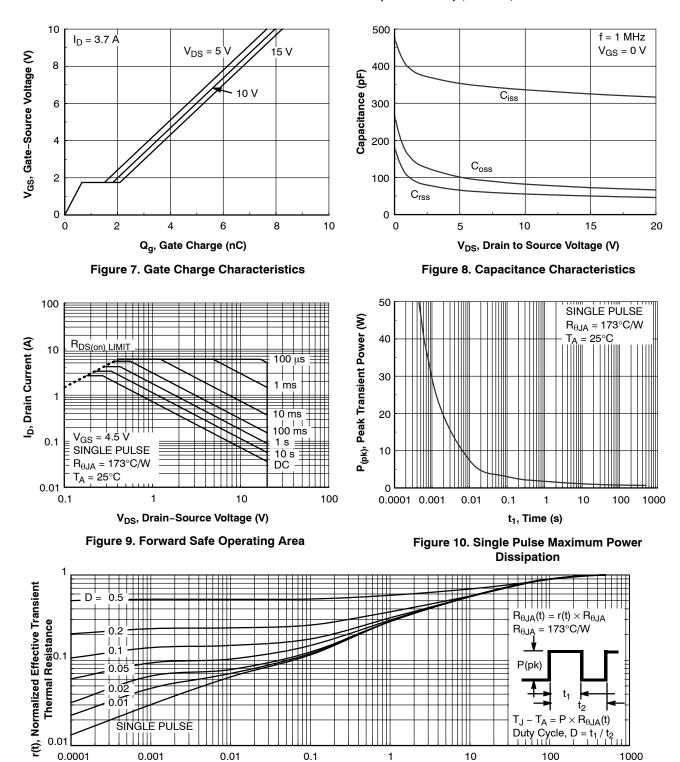


Figure 11. Transient Thermal Response Curve

t, Time (s)

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TYPICAL CHARACTERISTICS Q2 (P-Channel)

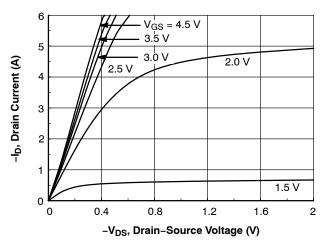


Figure 12. On-Region Characteristics

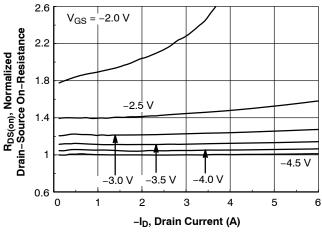


Figure 13. On-Resistance Variation with Drain Current and Gate Voltage

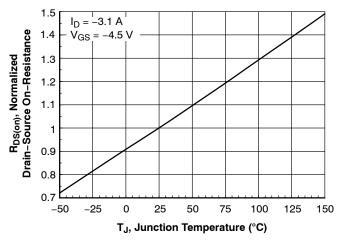


Figure 14. On-Resistance Variation with Temperature

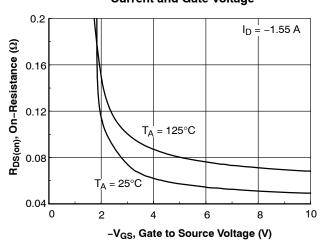


Figure 15. On-Resistance Variation with Gate-to-Source Voltage

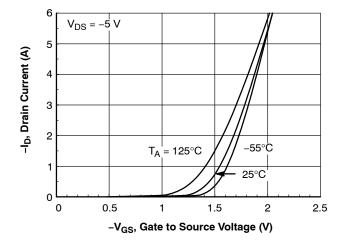


Figure 16. Transfer Characteristics

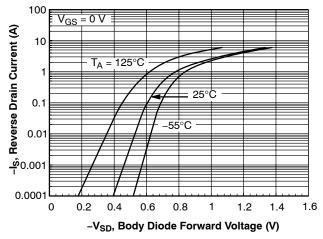


Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS Q2 (P-Channel) (continued)

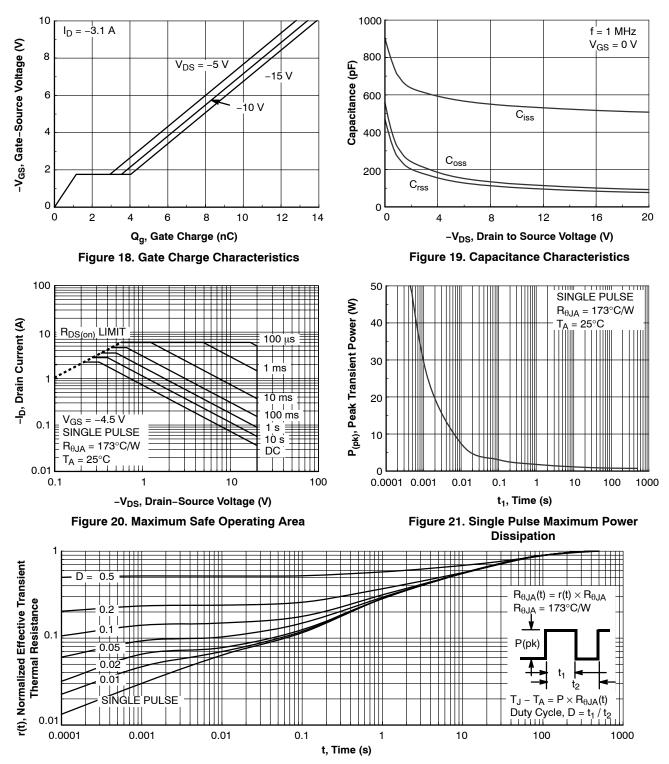
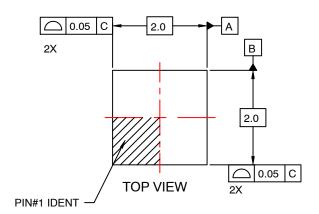
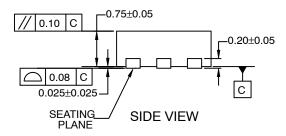
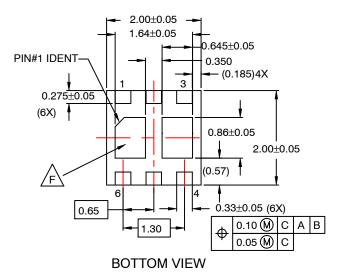
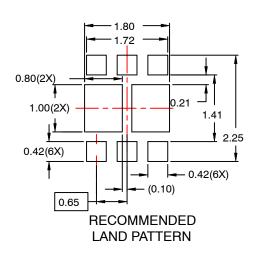


Figure 22. Transient Thermal Response Curve


Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


MicroFET is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


WDFN6 2x2, 0.65P CASE 511DA ISSUE O

DATE 31 JUL 2016

NOTES:

- A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

F. NON-JEDEC DUAL DAP

DOCUMENT NUMBER:	98AON13615G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales