MOSFET－N 沟道， POWERTRENCH ${ }^{\circledR}$

150 V， 25 A， 34 m Ω

FDMC86260ET150

概述

该 N 沟道 MOSFET 采用安森美（onsemi）进的 POWERTRENCH工艺生产，这一先进工艺是专为最大限度地降低通态电阻并保持卓越开关性能而定制的。

特性

- T_{J} 额定值扩展： $175^{\circ} \mathrm{C}$
- 最大 $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}=34 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}$
- 最大 $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}=44 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.8 \mathrm{~A}$
- 高性能沟道技术可实现极低的 $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$
- 100% 经过 UIL 测试
- 终端为无铅产品
- 符合 RoHS 标准

应用
－DC－DC 转换

MOSFET 最大额定值（ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted）

符号	参数	额定值	单位
$V_{\text {DS }}$	漏极一源极电压	150	V
V_{GS}	栅极一源极电压	± 20	V
ID	漏极电流 连续， $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$（注 5） 连续， $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$（注5） 连续， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（注 1a） 脉冲（注 4）	$\begin{aligned} & 25 \\ & 18 \\ & 5.4 \\ & 116 \end{aligned}$	A
$E_{\text {AS }}$	单脉冲雪崩能量（注 3）	121	mJ
P_{D}	功耗 $\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (注 1a) } \end{aligned}$	$\begin{aligned} & 65 \\ & 2.8 \end{aligned}$	W
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	工作和存储结温范围	$\begin{aligned} & \hline-55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device．If any of these limits are exceeded，device functionality should not be assumed，damage may occur and reliability may be affected．

（参考译文）

如果电压超过最大额定值表中列出的值范围，器件可能会损坏。如果超过任何这些限值，将无法保证器件功能，可能会导致器件损坏，影响可靠性。

热性能

符号	参数	额定值	单位
$\mathrm{R}_{\text {өJC }}$	结至外壳热阻（注 1）	2.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {ӨJA }}$	结至环境热阻（注 1a）	53	${ }^{\circ} \mathrm{C} / \mathrm{W}$

WDFN8 $3.3 \times 3.3,0.65 P$
（Power 33）
CASE 483AW

N－CHANNEL MOSFET

MARKING DIAGRAM

Z
＝Assembly Plant Code
XYY $\quad=3$－Digit Date Code Forma
KK \quad 2－Alphanumeric Lot Run Traceability Code
FDMC86260ET $=$ Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping †		
FDMC86260ET150	PQFN8			
（Pb－Free，				
Halide Free）			3000／	Tape \＆Reel
:---:				

\dagger For information on tape and reel specifications， including part orientation and tape sizes，please refer to our Tape and Reel Packaging Specification Brochure，BRD8011／D．

电气特性（ $T_{J}=25^{\circ} \mathrm{C}$ 除非另有说明）

符号	参数	测试条件	最小值	典型值	最大值	单位

关断特性

BV ${ }_{\text {DSS }}$	漏极一源极击穿电压	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	150	－	－	V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	击穿电压温度系数	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ ，参考温度为 to $25^{\circ} \mathrm{C}$	－	110	－	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSS }}$	零栅极电压漏极电流	$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	－	－	1	$\mu \mathrm{A}$
IGSS	栅极一源极漏电流	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	－	－	± 100	nA

导通特性

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	栅极一源极阈值电压	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	2.7	4	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	栅极一源极阈值电压温度系数	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ ，参考温度为 to $25^{\circ} \mathrm{C}$	－	－9	－	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text {（on）}}$	漏极至源极静态导通电阻	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}$	－	27	34	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.8 \mathrm{~A}$	－	31	44	
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	－	55	69	
grs	正向跨导	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}$	－	19	－	S

动态特性

$\mathrm{C}_{\text {iss }}$	输入电容	$\mathrm{V}_{\mathrm{DS}}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	－	1000	1330	pF
$\mathrm{C}_{\text {oss }}$	输出电容		－	105	140	pF
$\mathrm{C}_{\text {rss }}$	反向传输电容		－	4.8	10	pF
R_{g}	栅极阻抗		0.1	0.6	1.8	Ω

开关特性

$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	导通延迟时间	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	－	9.5	19	ns
t_{r}	上升时间		－	2	10	ns
$\mathrm{t}_{\mathrm{d} \text {（off）}}$	关断延迟时间		－	17	30	ns
t_{f}	下降时间		－	3.3	10	ns
$\mathrm{Q}_{\mathrm{g} \text {（TOT）}}$	总栅极电荷	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { 至 } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A} \end{aligned}$	－	15	21	nC
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { 至 } 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A} \end{aligned}$	－	9.7	14	nC
Q_{gs}	总栅极电荷	$\mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}$	－	4.0	－	nC
Q_{gd}	栅极一漏极＂米勒＂电荷	$\mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.4 \mathrm{~A}$	－	3.1	－	nC

电气特性（ $T_{J}=25^{\circ} \mathrm{C}$ 除非另有说明）（continued）

符号	参数	测试条件	最小值	典型值	最大值	单位

漏极一源极二极管特性

V_{SD}	源极－漏极二极管正向电压	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=5.4 \mathrm{~A}$（注 2）	－	0.77	1.3	V
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.9 \mathrm{~A}$（注 2）	－	0.72	1.2	
t_{rr}	反向恢复时间	$\mathrm{I}_{\mathrm{F}}=5.4 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	－	64	102	ns
$Q_{\text {rr }}$	反向恢复电荷		－	85	137	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions，unless otherwise noted．Product performance may not be indicated by the Electrical Characteristics if operated under different conditions．
（参考译文）
除非另有说明，＂电气特性＂表格中列出的是所列测试条件下的产品性能参数。如果在不同条件下运行，产品性能可能与＂电气特性＂表格中所列性能参数不一致。

注意：

$1 R_{\theta J A}$ 取决于安装在一平方英寸衬垫， $20 z$ 铜焊盘以及 FR－4 材质尺寸 $1.5 \times 1.5 \mathrm{in}$ ．的衬垫上的器件。 $R_{\theta C A}$ 由用户的电路板设计确定。

a） 53 安装在 2 oz 最小 $1 \mathrm{in}^{2}$铜焊盘上时的 ${ }^{\circ} \mathrm{C} / \mathrm{W}$

b） 125 安装在 $2 o z$ 最小铜焊盘上时的 ${ }^{\circ} \mathrm{C} / \mathrm{W}$

2 脉冲测试：脉冲宽度：＜ 300 ms ，占空比：＜ 2.0% 。
$3 \mathrm{E}_{\mathrm{AS}}$ 为 121 mJ ，依据起始 $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, ~ \mathrm{~L}=3 \mathrm{mH}, ~ \mathrm{I}_{\mathrm{AS}}=9 \mathrm{~A}, ~ \mathrm{~V}_{\mathrm{DD}}=150 \mathrm{~V}, ~ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ 。100\％经过测试 $\left(\mathrm{L}=0.1 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=22 \mathrm{~A}\right)$ 。
4 有关脉冲编号的更多详情，请参考图 11 中的 SOA 图形。
5 计算得到的连续电流仅限于最大结温，实际连续电流将受限于散热以及电气机械应用的电路板设计。

典型特性
（ $T_{J}=25^{\circ} \mathrm{C}$ 除非另有说明）

图1．通态区域特性

图 3．标准化导通电阻与结温的关系

图5．转换特性

图 2．标准化导通电阻与漏极电流和栅极电压的关系

图 4．导通电阻与栅极 - 源极电压的关系

图 6．源极－漏极二极管正向电压与源电流的关系

典型特性（continued）
（ $T_{J}=25^{\circ} \mathrm{C}$ 除非另有说明）

图7．栅极电荷特性

图9．非箖位电感开关能力

V_{DS} ，Drain to Source Voltage（ V ）
图 11．正向偏压安全工作区

图 8．电容与漏极－源极电压的关系

图 10．最大连续漏极电流与壳温的关系

图 12．单个脉冲最大功耗

FDMC86260ET150

图 13．结至外壳瞬态热响应曲线

WDFN8 $3.30 \times 3.30 \times 0.75,0.65 P$
CASE 483AW
ISSUE B

DATE 22 MAR 2024
NOTES:

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEP95 SEC. 3 SPP-12. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD, EMBEDDED METAL OR MARKED FEATURE.
5. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS
6. SEATING PLANE IS DEFINED BY THE TERMINALS. 'A1' IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

ERONT VIEW

BOTTOM VIEW

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC

 MARKING DIAGRAM*| ${ }^{\circ}$ XXXX | XXXX = Specific Device Code |
| :---: | :--- |
| AYWW | $=$ Assembly Location |
| | Y |

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e ~ i n d i c a t o r, ~ " G$ " or microdot " m ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON13672G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WDFN8 3.30×3.30×0.75, 0.65P | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

