MOSFET - N-Channel, UltraFET Trench

100 V, 22 A, 23 m Ω

FDMS3672

General Description

UItraFET devices combine characteristics that enable benchmark efficiency in power conversion applications. Optimized for $\mathrm{R}_{\mathrm{DS}(\text { on) }}$, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

Features

- $\operatorname{Max} \mathrm{R}_{\mathrm{DS}(\text { on })}=23 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}$
- $\operatorname{Max} \mathrm{R}_{\mathrm{DS}(\text { on })}=29 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~A}$
- Typ $\mathrm{Qg}=31 \mathrm{nC}$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$
- Low Miller Charge
- Optimized Efficiency at High Frequencies
- This Device is $\mathrm{Pb}-$ Free, Halide Free and RoHS Compliant

Applications

- DC-DC Conversion

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Symbol	Parameter		Value	Unit
V_{DS}	Drain-Source Voltage		100	V
V_{GS}	Gate-Source Voltage		± 20	V
$I_{\text {D }}$	Drain Current - Continuous (Package Limited) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ - Continuous (Silicon Limited) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ - Continuous (Note 1a) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ - Pulsed		$\begin{aligned} & 22 \\ & 41 \\ & 7.4 \\ & 30 \\ & \hline \end{aligned}$	A
P_{D}	Power Dissipation Power Dissipation (Note 1a)	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 78 \\ & 2.5 \end{aligned}$	W
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range		$\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance, Junction to Case	1.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient (Note 1a)	53	${ }^{\circ} \mathrm{C} / \mathrm{W}$

$\mathbf{V}_{\text {DS }}$	$\mathbf{R}_{\text {DS(ON) }}$ MAX	$\mathbf{I}_{\mathbf{D}}$ MAX
100 V	$23 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	22 A
	$29 \mathrm{~m} \Omega @ 6 \mathrm{~V}$	

D D D D Bottom
WDFN8 5x6, 1.27P
Power 56 CASE 506DP

MARKING DIAGRAM

\&Z = Assembly Location
\&2 = Date Code
\&K = Lot Run Traceability Code
FDMS3672 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping †
FDMS3672	WDFN8 (Pb-Free, Halide Free)	$3000 /$ Tape \& Reel${ }^{2}$

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
$\mathrm{BV}_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	100	-	-	V
$\begin{gathered} \Delta \mathrm{BV}_{\mathrm{DSS}} \\ / \Delta \mathrm{T}_{\mathrm{J}} \end{gathered}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$	-	104	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{VV}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=55^{\circ} \mathrm{C}$	-	-	10	
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 100	nA

ON CHARACTERISTICS

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0	3.1	4.0	V
$\Delta \mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$	-	-11	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}$	-	19	23	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~A}$	-	24	29	
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	33	40	
gFs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}$	-	20	-	S

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	2015	2680	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	210	280	pF
$\mathrm{Crss}^{\text {r }}$	Reverse Transfer Capacitance		-	90	135	pF
R_{g}	Gate Resistance	$\mathrm{f}=1 \mathrm{MHz}$	-	1.3	-	Ω

SWITCHING CHARACTERISTICS

$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{array} \end{aligned}$	-	23	37	ns
t_{r}	Rise Time		-	11	20	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	36	58	ns
t_{f}	Fall Time		-	8	16	ns
Q_{g}	Total Gate Charge at 10 V	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A} \end{aligned}$	-	31	44	nC
Q_{g}	Total Gate Charge at 4.5 V	$\begin{aligned} & V_{G S}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7 \mathrm{~A} \end{aligned}$	-	-	-	nC
Q_{gs}	Gate to Source Charge	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}$	-	9.5	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.4 \mathrm{~A}$	-	8	-	nC

DRAIN-SOURCE DIODE CHARACTERISTICS

$V_{\text {SD }}$	Source to Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=7.4 \mathrm{~A}$ (Note 2)	-	0.8	1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=7.4 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	52	78	ns
$Q_{\text {rr }}$	Reverse Recovery Charge		-	101	152	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTES:

1. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ pad 2 oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of $F R-4$ material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

a) $50^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper.

b) $125^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper.
2. Pulse Test: Pulse Width $<300 \mu \mathrm{~s}$, Duty cycle $<2.0 \%$.

TYPICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 1. On-Region Characteristics

Figure 3. Normalized On-Resistance
vs. Junction Temperature

Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

Figure 4. On-Resistance vs. Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (CONTINUED)
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 7. Gate Charge Characteristics

Figure 9. Unclamped Inductive Switching Capability

Figure 11. Forward Bias Safe Operating Area

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (CONTINUED)
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 13. Transient Thermal Response Curve

WDFN8 5x6, 1.27P
CASE 506DP
ISSUE O
DATE 31 AUG 2016

RECOMMENDED LAND PATTERN

(A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
D. TERMINALS 5,6,7 AND 8 ARE TIED TO THE EXPOSED PADDLE

DOCUMENT NUMBER:	98AON13598G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN8 5X6, 1.27P		PAGE 1 OF 1

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

