onsemi

MOSFET - Power, Single N-Channel, PQFN8

120 V, 4.0 mΩ, 114 A

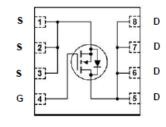
FDMS4D0N12C

Features

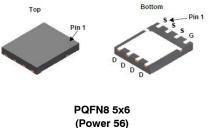
- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These are Pb-free, Halogen Free / BFR Free and are RoHS Compliant

Typical Applications

- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch

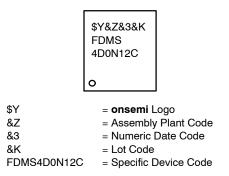

MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Par	ameter		Symbol	Value	Unit
i arameter			V _{DSS}	value	Unit
Drain-to-Source Vo	Drain-to-Source Voltage			120	V
Gate-to-Source Vo	tage		V _{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 7)	Steady State T _C = 25°C		Ι _D	114	A
Power Dissipation $R_{\theta JC}$ (Note 2)			P _D	106	W
Continuous Drain Current R _{θJA} (Note 6, 7)	Steady State T _A = 25°C		Ι _D	18.5	A
Power Dissipation $R_{\theta JA}$ (Note 6, 7)			P _D	2.7	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	628	A
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +150	°C
Source Current (Body Diode)			۱ _S	114	А
Single Pulse Drain-to-Source Avalanche Energy (I_{AV} = 66.7 A, L = 0.1 mH)			E _{AS}	222	mJ
Soldering Purposes	Lead Temperature Soldering Reflow for			300	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{(BR)DDS}	I _D MAX	R _{DS(on)} MAX	
120 V	67 A	4.4 mΩ @ 10 V	
	33 A	8.8 mΩ @ 6 V	

ELECTRICAL CONNECTION



N-Channel MOSFET

CASE 483AF

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Device	Package	Shipping†
FDMS4D0N12C	PQFN8 (Pb-Free)	3,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

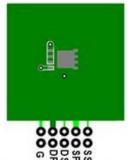
Parameter	Symbol	Мах	Unit
Junction – to – Case – Steady State (Note 7)	Rejc	1.18	°C/W
Junction – to – Ambient – Steady State (Note 7)	RθJA	45	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Co	nditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain – to – Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		120			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I_D = 250 $\mu A,$ ref to 25°C			49		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1	μΑ
		V _{DS} = 96 V	T _J = 125°C			100	μA
Gate – to – Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V				±100	nA
ON CHARACTERISTICS (Note 8)						•	•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = 370 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	$I_D = 370 \ \mu A$, ref to $25^{\circ}C$			-8.5		mV/°C
Drain – to – Source On Resistance		V_{GS} = 10 V, I _D = 67 A V_{GS} = 6 V, I _D = 33 A			3.3	4.4	mΩ
	R _{DS(on)}				4.7	8.8	
Forward Transconductance	9 FS	V _{DS} = 5 V, I _D = 67 A			144		S
Gate-Resistance	R _G	T _A = 25°C			0.9	1.8	Ω
CHARGES & CAPACITANCES							•
Input Capacitance	C _{ISS}	V _{GS} = 0 V,			4565	6460	pF
Output Capacitance	C _{OSS}	V _{DS} =	= 60 V		2045	3060	
Reverse Transfer Capacitance	C _{RSS}		ſ		17	24	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 6 V, V_{DS} = 60 V,$ $I_{D} = 67 A$			36	51	nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V,			58	82	
Gate-to-Source Charge	Q _{GS}	I _D = 67 A			21		
Gate-to-Drain Charge	Q _{GD}				9		1
Plateau Voltage	V _{GP}				5		V
Output Charge	Q _{OSS}	V _{DD} = 60 V, V _{GS} = 0 V			207		nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

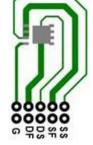
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Not	e 8)					
Turn – On Delay Time	td _(ON)	$V_{GS} = 10 \text{ V}, V_{DS} = 60 \text{ V},$ $I_D = 67 \text{ A}, \text{ R}_G = 6 \Omega$		25	41	ns
Rise Time	t _r	I _D = 67 A, H _G = 6 Ω		8	16	
Turn – Off Delay Time	t _{D(OFF)}			45	72	
Fall Time	t _f			12	22	


DRAIN-SOURCE DIODE CHARACTERISTICS

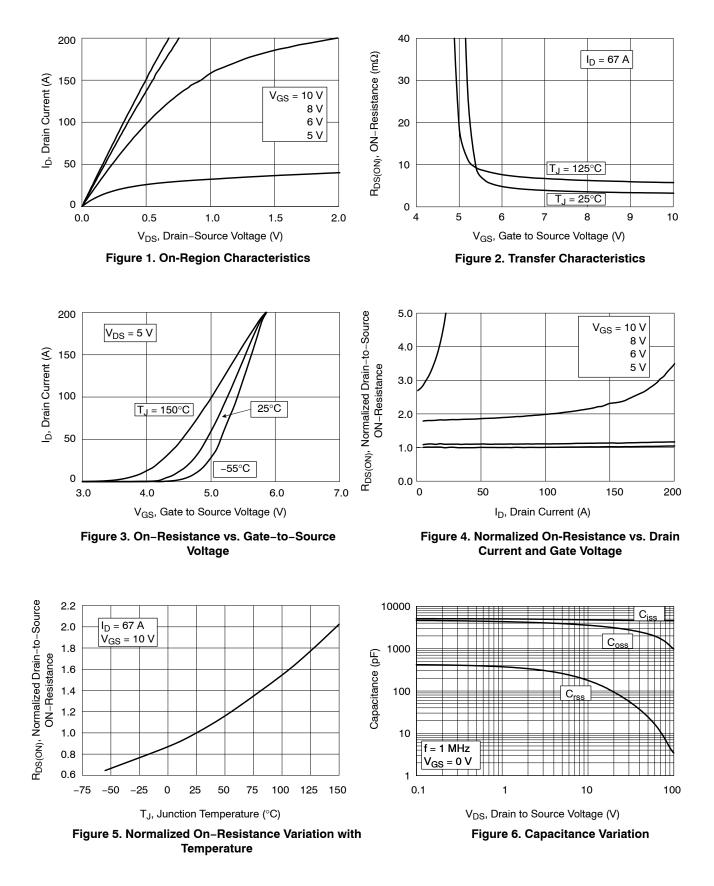
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C	0.86	1.3	V
		I _S = 67 A	T _J = 125°C	0.7	1.2	1
Reverse Recovery Time	t _{RR}	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \\ dI_S/dt = 300 \ \text{A}/\mu\text{s}, \\ I_S = 33 \ \text{A} \end{array}$		53	84	ns
Reverse Recovery Charge	Q _{RR}			175	280	nC
Reverse Recovery Time	t _{RR}	V _{GS} = dI _S /dt = 1	= 0 V,	36	57	ns
Reverse Recovery Charge	Q _{RR}		33 Α 33 Α	360	575	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

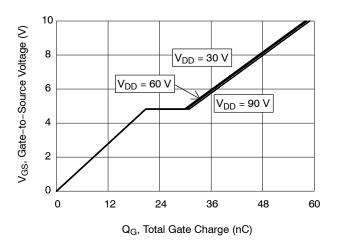
NOTES:

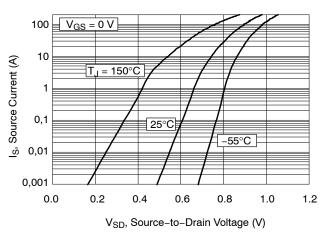

1. R_{0,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0CA} is determined by the user's board design.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 222 mJ is based on starting T_J = 25°C; L = 0.1 mH, I_{AS} = 66.7 A, V_{DD} = 100 V, V_{GS} = 12 V, 100% tested at L = 0.1 mH, I_{AS} = 66.7 A. 4. Pulsed I_D please refer to Fig. 11 SOA graph for more details.
- Computed continuous current limited to max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.
- 6. Surface-mounted on FR4 board using 1 in² pad size, 2 oz Cu pad.
- 7. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 8. Switching characteristics are independent of operating junction temperatures.

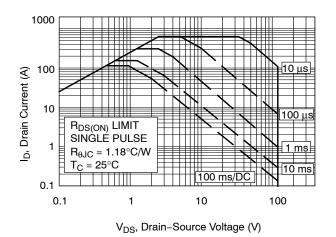

a) 45°C/W when mounted on

a 1 in² pad of 2 oz copper.




b) 115°C/W when mounted on a minimum pad of 2 oz copper.

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS (continued)

120

100

80

60

40

20

0

25

I_D, Drain Current (A)

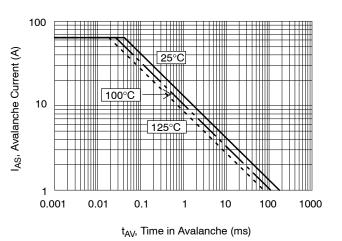
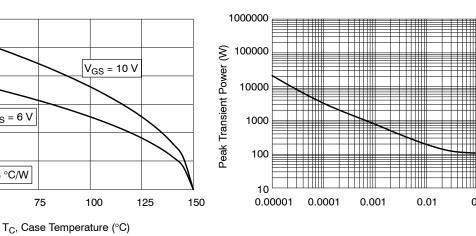
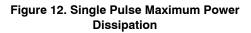



Figure 10. IPEAK vs. Time in Avalanche



75

 $V_{GS} = 6 V$

 $R_{\theta JC} = 1.18 \ ^{\circ}C/W$

50

0.1

1

TYPICAL CHARACTERISTICS (continued)

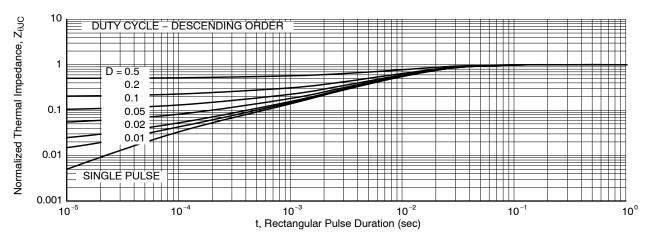
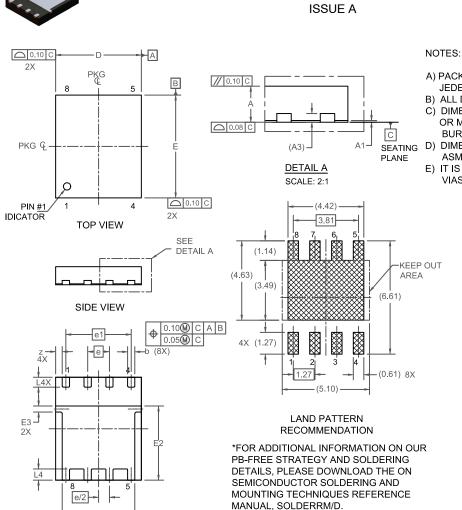



Figure 13. Transient Thermal Response Curve

PQFN8 5X6, 1.27P CASE 483AF

DATE 06 JUL 2021

UNLESS OTHERWISE SPECIFIED

- A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. AA,
- B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS DO NOT INCLUDE BURRS
- OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP OUT AREA.

DIM	N	MILLIMETERS				
	MIN.	NOM.	MAX.			
А	0.90	1.00	1.10			
A1	0.00	-	0.05			
A3		0.20 REF				
b	0.37	0.42	0.47			
D	4.90	5.00	5.10			
D2	4.13	4.23	4.33			
E	5.90	6.00	6.10			
E2	4.23	4.33	4.43			
E3	(.35 REF				
е		1.27 BSC	;			
e/2	(0.635 BSC				
e1	:	3.81 BSC				
L	0.52	0.57	0.62			
L4	0.55	0.65	0.75			
z	0.38 REF					

→ D2→→
BOTTOM VIEW

DOCUMENT NUMBER:	98AON13656G Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1			

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>