Onsemi

IGBT - Power, Co-PAK N-Channel, Field Stop IV, MQ (Medium Speed), TO247-4L 650 V, 1.45 V, 50 A FGH4L50T65MQDC50

Using the novel field stop 4th generation IGBT technology and generation 1.5 SiC Schottky Diode technology in TO-247 4-lead package, FGH4L50T65MQDC50 offers the optimum performance with both low conduction and switching losses for high-efficiency operations in various applications, especially totem pole bridgeless PFC and Inverter.

Features

- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- 100% of the Parts are Tested for ILM (Note 2)
- Smooth and Optimized Switching
- Low Saturation Voltage: $V_{CE(Sat)} = 1.45 \text{ V} (Typ.) @ I_C = 50 \text{ A}$
- No Reverse Recovery / No Forward Recovery
- Tight Parameter Distribution
- RoHS Compliant

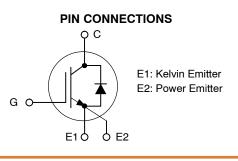
Applications

- Charging Station (EVSE)
- UPS, ESS

- Solar Inverter
- PFC, Converters

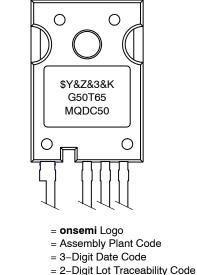
MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter Symbol Value Unit						
Parameter			Value	Unit		
Collector-to-Emitter Voltag	ge	V _{CES}	650	V		
Gate-to-Emitter Voltage		V_{GES}	±20			
Transient Gate-to-Emitter Voltage $(t_p < 0.5 \ \mu s, D < 0.001)$			±30			
Collector Current	T _C = 25°C (Note 1)	Ι _C	100	А		
	$T_C = 100^{\circ}C$		50			
Power Dissipation	ower Dissipation $T_{\rm C} = 25^{\circ}{\rm C}$		246	W		
	$T_{C} = 100^{\circ}C$]	123			
Pulsed Collector Current	T _C = 25°C (Note 2)	I _{LM}	200	А		
	T _C = 25°C (Note 3)	I _{CM}	200			
Diode Forward Current	$T_{C} = 25^{\circ}C$ (Note 1)	١ _F	60	А		
	$T_{C} = 100^{\circ}C$		50			
Pulsed Diode Maximum Forward Current	$T_{C} = 25^{\circ}C$	I _{FM}	200	A		
Operating Junction and Storage Temperature Range		T _J , T _{STG}	–55 to +175	°C		
Maximum Lead Temp. for Soldering Purposes (1/8" from case for 5 s)		ΤL	260	°C		
Otroppo overeding these lie						


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limit by bond wire

2. V_{CC} = 400 V, V_{GE} = 15 V, I_C = 200 A, Inductive Load, 100% tested


3. Repetitive rating: pulse width limited by max. junction temperature

BV _{CES}	V _{CE(sat)}	Ιc
650 V	1.45 V	50 A

MARKING DIAGRAM

&K G50T65MQDC50 = Specific Device Code

\$Y

&Z

&З

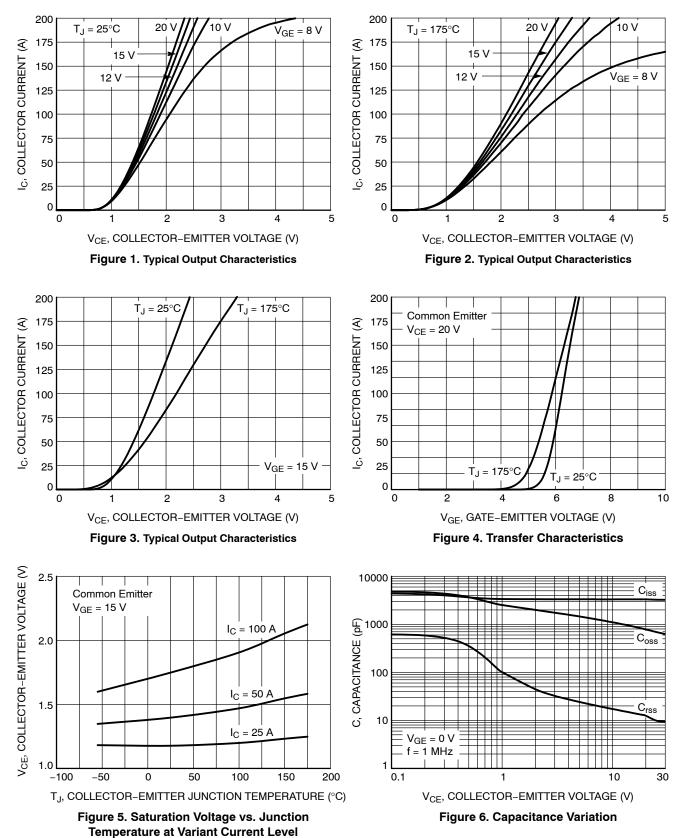
ORDERING INFORMATION

Device	Package	Shipping
FGH4L50T65MQDC50	TO-247	30 Units / Tube
	–4LD	

THERMAL CHARACTERISTICS

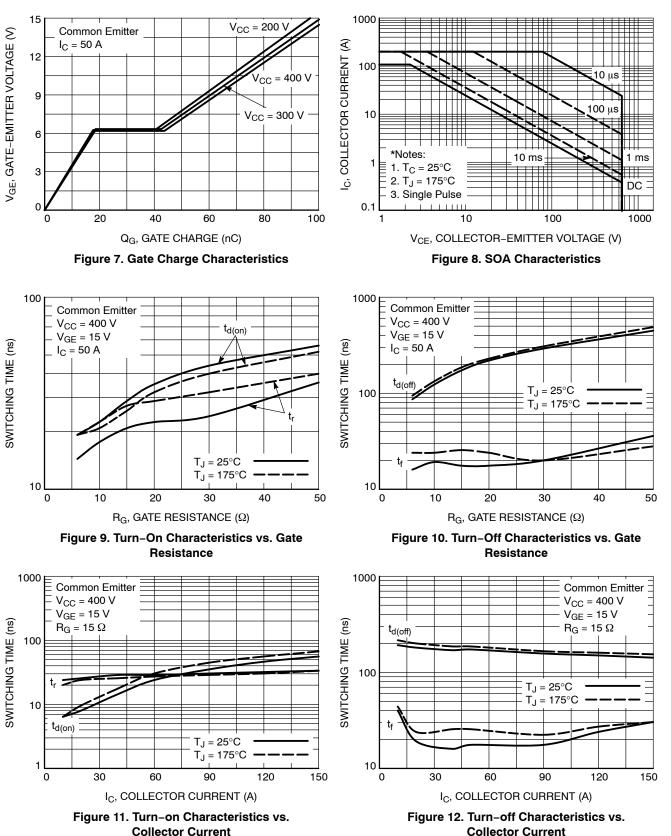
Rating	Symbol	Value	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{ ext{ heta}JC}$	0.61	°C/W
Thermal Resistance Junction-to-Case, for Diode	$R_{ ext{ heta}JCD}$	0.70	
Thermal Resistance junction-to-Ambient	$R_{ hetaJA}$	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						-
Collector-emitter Breakdown Voltage, Gate-emitter Short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	_	0.5	-	V/°C
Collector-emitter Cut-off Current, Gate-emitter Short-circuited	V_{GE} = 0 V, V_{CE} = 650 V	I _{CES}	_	-	250	μΑ
Gate Leakage Current, Collector-emitter Short-circuited	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS	-	-				-
Gate-emitter Threshold Voltage	$V_{GE} = V_{CE}, I_C = 50 \text{ mA}$	V _{GE(th)}	3.0	4.5	6.0	V
Collector-emitter Saturation Voltage	V_{GE} = 15 V, I _C = 50 A, T _J = 25°C	V _{CE(sat)}	-	1.45	1.8	V
	V_{GE} = 15 V, I _C = 50 A, T _J = 175°C		-	1.65	-	1
DYNAMIC CHARACTERISTICS		•		•		
Input Capacitance	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	Cies	-	3340	-	pF
Output Capacitance		C _{oes}	-	630	-	1
Reverse Transfer Capacitance		C _{res}	-	10	-	-
Gate Charge Total	V_{CE} = 400 V, I _C = 50 A, V _{GE} = 15 V	Qg	-	102	-	nC
Gate-to-emitter Charge		Q _{ge}	-	19	-	1
Gate-to-collector Charge		Q _{gc}	-	25	-	1
SWITCHING CHARACTERISTICS, INDUC	TIVE LOAD					
Turn-on Delay Time	$T_{J} = 25^{\circ}C, V_{CC} = 400 V,$	t _{d(on)}	-	27	-	ns
Rise Time	$I_{C} = 25 \text{ A}, R_{G} = 15 \Omega,$ $V_{GE} = 15 \text{ V}, \text{ Inductive Load}$	t _r	-	10	-	1
Turn-off Delay Time		t _{d(off)}	-	181	-	1
Fall Time		t _f	-	21	-	1
Turn-on Switching Loss		E _{on}	-	0.24	-	mJ
Turn-off Switching Loss		E _{off}	-	0.31	-	1
Total Switching Loss		E _{ts}	-	0.55	-	1
Turn–on Delay Time	$T_{J} = 25^{\circ}C, V_{CC} = 400 V,$	t _{d(on)}	-	29	-	ns
Rise Time	I_{C} = 50 A, R_{G} = 15 Ω , V _{GE} = 15 V, Inductive Load	t _r	-	21	-	1
Turn–off Delay Time		t _{d(off)}	-	173	-	1
Fall Time		t _f	-	18	-	1
Turn-on Switching Loss		E _{on}	-	0.54	-	mJ
Turn-off Switching Loss		E _{off}	-	0.59	-	1
Total Switching Loss		E _{ts}	_	1.13	-	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, IN	DUCTIVE LOAD					
Turn-on Delay Time	$T_{J} = 175^{\circ}C, V_{CC} = 400 V,$	t _{d(on)}	-	24	-	ns
Rise Time	I_{C} = 25 A, R_{G} = 15 Ω , V _{GE} = 15 V, Inductive Load	t _r	-	11	-	
Turn-off Delay Time		t _{d(off)}	-	197	-	
Fall Time		t _f	-	24	-	
Turn-on Switching Loss		Eon	-	0.31	-	mJ
Turn-off Switching Loss		E _{off}	-	0.51	-	
Total Switching Loss		E _{ts}	-	0.82	-	
Turn-on Delay Time	$T_{J} = 175^{\circ}C, V_{CC} = 400 V,$	t _{d(on)}	-	26	-	ns
Rise Time	I_{C} = 50 A, R_{G} = 15 Ω , V _{GE} = 15 V, Inductive Load	t _r	-	27	-	
Turn-off Delay Time		t _{d(off)}	-	186	-	
Fall Time		t _f	-	26	-	
Turn-on Switching Loss		Eon	-	0.74	-	mJ
Turn-off Switching Loss		E _{off}	-	0.97	-	
Total Switching Loss		E _{ts}	-	1.71	-	1


Diode Forward Voltage	I _F = 50 A, T _J = 25°C	V _F	-	1.46	1.7	V
	I _F = 50 A, T _J = 175°C		-	1.83	-	
Total Capacitance	V_R = 400 V, f = 1 MHz, T _J = 25°C	С	-	210	-	pF
	V_R = 600 V, f = 1 MHz, T _J = 25°C		_	202	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

150

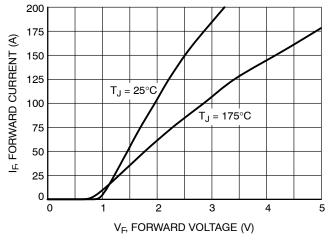


Figure 15. Forward Diode Characteristics

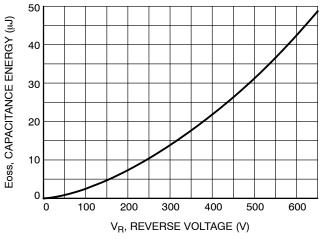


Figure 17. Output Capacitance Stored Energy

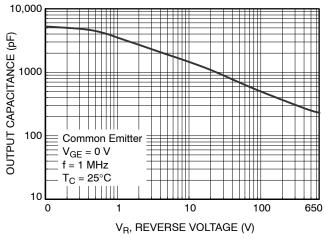
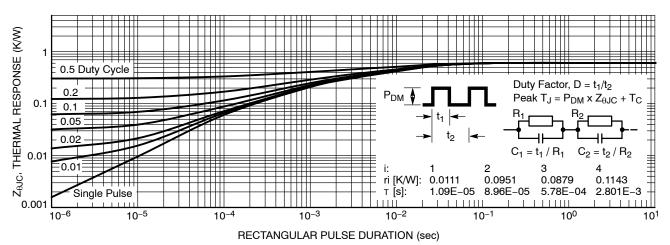



Figure 16. (Diode) Output Capacitance (Coes) vs. Reverse Voltage

TYPICAL CHARACTERISTICS

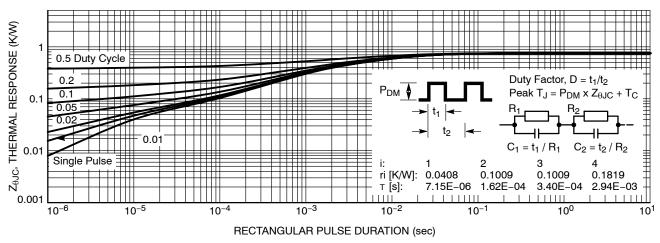


Figure 19. Transient Thermal Impedance of Diode

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

NOM

5.00

2.40

2.00

1.20

1.40

2.22

0.60

22.54

16.25

1.17

2.54 BSC

5.08 BSC

15.60

13.00

5.00

18.42

2.62

3.60

6.80

6.17

6.17

3.40

6.60

5.97

5.97

р p1

Q

S

MAX

5.20

2.70

2.20

1.33

1.60

2.42

0.70

22.74

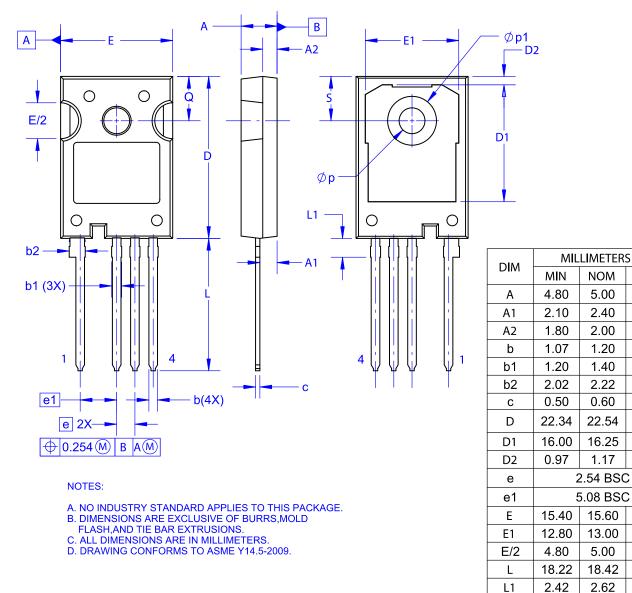
16.50

1.37

15.80

13.20

5.20


18.62

2.82

3.80

7.00 6.37

6.37

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>