MC100LVEL39

3.3 V ECL $\div 2 / 4, \div \mathbf{4 / 6}$ Clock Generation Chip

Description

The MC100LVEL 39 is a low skew $\div 2 / 4, \div 4 / 6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended input signal. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device.

The common enable $(\overline{\mathrm{EN}})$ is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple LVEL39s, the Master Reset (MR) input must be asserted to ensure synchronization. For systems which only use one LVEL39, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\div 2 / 4$ and the $\div 4 / 6$ outputs of a single device.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias $A C$ coupled inputs. When used, decouple V_{BB} and V_{CC} via a $.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

Features

- 50 ps Maximum Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection: Human Body Model; > 2 kV
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.8 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.8 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free)
- For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count $=419$ devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Pinout: SOIC-20 WB (Top View)

Table 1. PIN DESCRIPTION

Column Head	
$\begin{gathered} \text { CLK, } \overline{C L K} \\ Q_{0}, Q_{1} ; \mathrm{Q}_{0}, \bar{Q}_{1} \\ \mathrm{Q}_{2}, \mathrm{Q}_{3} ; \mathrm{Q}_{2}, \mathrm{Q}_{3} \end{gathered}$ DIVSELa, DIVSELb EN MR $V_{B B}$ $V_{C C}$ V_{EE} NC	ECL Diff Clock Inputs ECL Diff $\div 2 / 4$ Outputs ECL Diff $\div 4 / 6$ Outputs ECL Frequency Select Inputs ECL Sync Enable ECL Master Reset Reference Voltage Output Positive Supply Negative Supply No Connect

Table 2. FUNCTION TABLE

CLK	EN	MR	Function
Z	L	L	Divide
ZZ	H	L	Hold Q0-3
X	X	H	Reset Qo-3

$\mathrm{Z}=$ Low-to-High Transition ZZ = High-to-Low Transition X = Don't Care

DIVSELa	$\mathbf{Q}_{\mathbf{0}}, \mathbf{Q}_{\mathbf{1}}$ Outputs
L	Divide by 2
H	Divide by 4
DIVSELb	$\mathbf{Q}_{\mathbf{2}}, \mathbf{Q}_{\mathbf{3}}$ Outputs
L	Divide by 4
H	Divide by 6

Figure 2. Logic Diagram

Figure 3. Timing Diagrams

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8 to 0	V
$\mathrm{V}_{\text {EE }}$	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8 to 0	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{1} \leq V_{C C} \\ & V_{I} \geq V_{E E} \end{aligned}$	$\begin{gathered} 6 \text { to } 0 \\ -6 \text { to } 0 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
I_{BB}	V_{BB} Sink/Source			± 0.5	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & 0 \text { Ifpm } \\ & 500 \text { lfpm } \end{aligned}$	SOIC-20 WB	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)	<2 to $3 \mathrm{sec} @ 260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. LVPECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		50	59		50	59		54	61	mA
V_{OH}	Output HIGH Voltage (Note 2)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
V_{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
VIHCMR	$\begin{aligned} & \text { Input HIGH Voltage Common Mode } \\ & \text { Range (Differential) (Note 3) } \\ & V_{\mathrm{PP}}<500 \mathrm{mV} \\ & V_{\mathrm{PP}} \geq 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. $\mathrm{V}_{\text {EE }}$ can vary $\pm 0.3 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $V_{I H C M R}$ min varies $1: 1$ with $\mathrm{V}_{E E}$, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\mathrm{PP}} \mathrm{min}$ and 1.0 V .

Table 5. LVNECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$I_{\text {EE }}$	Power Supply Current		50	59		50	59		54	61	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V_{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
$\mathrm{V}_{\text {IHCMR }}$	$\begin{aligned} & \text { Input HIGH Voltage Common Mode } \\ & \text { Range (Differential) (Note 3) } \\ & V_{P P}<500 \mathrm{mV} \\ & V_{P P} \geq 500 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & -2.0 \\ & -1.8 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & -2.1 \\ & -1.9 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	$\begin{array}{r} -2.1 \\ -1.9 \end{array}$		$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $\pm 0.3 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{E E}$, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$. range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1.0 V .

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
fmax	Maximum Toggle Frequency	1000			1000			1000			MHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	```Propagation Delayed Output CLK to Q (Diff) CLK to Q (S.E.) MR to Q```	$\begin{aligned} & 850 \\ & 850 \\ & 600 \end{aligned}$		$\begin{aligned} & 1150 \\ & 1150 \\ & 900 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \\ & 610 \end{aligned}$		$\begin{gathered} 1200 \\ 1200 \\ 910 \end{gathered}$	$\begin{aligned} & 950 \\ & 950 \\ & 630 \end{aligned}$		$\begin{gathered} 1250 \\ 1250 \\ 930 \end{gathered}$	ps
tskew				$\begin{gathered} \hline 50 \\ 200 \end{gathered}$			$\begin{gathered} \hline 50 \\ 200 \end{gathered}$			$\begin{gathered} 50 \\ 200 \end{gathered}$	ps
tJITTER	$\begin{aligned} & \text { Random CLOCK Jitter (RMS) @ } \\ & 1000 \mathrm{MHz} \end{aligned}$		2.0	3.0		2.0	3.0		2.0	3.0	ps
ts	Setup Time EN to CLK DIVSEL to CLK	$\begin{aligned} & 250 \\ & 400 \end{aligned}$			$\begin{aligned} & 250 \\ & 400 \end{aligned}$			$\begin{aligned} & 250 \\ & 400 \end{aligned}$			ps
t_{H}	Hold Time CLK to EN CLK to Div_Sel	$\begin{aligned} & 100 \\ & 150 \end{aligned}$			$\begin{aligned} & 100 \\ & 150 \end{aligned}$			$\begin{aligned} & 100 \\ & 150 \end{aligned}$			ps
V_{PP}	Input Swing (Note 3) CLK	250		1000	250		1000	250		1000	mV
t_{RR}	Reset Recovery Time			100			100			100	ps
$t_{\text {PW }}$	Minimum Pulse Width CLK MR	$\begin{array}{r} 500 \\ 700 \\ \hline \end{array}$			$\begin{aligned} & 500 \\ & 700 \end{aligned}$			$\begin{aligned} & 500 \\ & 700 \end{aligned}$			ps
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times Q (20\% - 80\%)	280		550	280		550	280		550	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. $\mathrm{V}_{\text {EE }}$ can vary $\pm 0.3 \mathrm{~V}$. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
2. Skew is measured between outputs under identical transitions.
3. $\mathrm{V}_{\mathrm{PP}}(\mathrm{min})$ is minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100 mV .

MC100LVEL39

Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION
PROTRUSION. ALLOWABLE PROTRUSIO
SHALL BE 0.13 TOTAL IN EXCESS OF B
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27	BSC
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	$7{ }^{\circ}$

\section*{MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

