3.3 V/5 V ECL Quad Differential Driver/Receiver MC10EP17, MC100EP17 ## **Description** The MC10/100EP17 is a 4-bit differential line receiver based on the EP17 device. The > 3.0 GHz maximum frequency provided by the high frequency outputs makes the device ideal for buffering of very high speed oscillators. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. The design incorporates two stages of gain, internal to the device, making it an excellent choice for use in high bandwidth amplifier applications. Inputs of unused gates can be left open and will not affect the operation of the rest of the device. All V_{CC} and V_{EE} pins must be externally connected to power supply to guarantee proper operation. The 100 Series contains temperature compensation. #### **Features** - 220 ps Typical Propagation Delay - Maximum Frequency > 3.0 GHz Typical - PECL Mode Operating Range: - $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$ - NECL Mode Operating Range: - $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -5.5 V - Open Input Default State - Safety Clamp on Inputs - Q Output Will Default LOW with Inputs Open or at V_{EE} - V_{BB} Output - These Devices are Pb-Free, Halogen Free and are RoHS Compliant 1 TSSOP-20 DT SUFFIX CASE 948E #### **MARKING DIAGRAM*** yyy = 10 or 100 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** | Device | Package | Shipping | |--------------|--------------------------|--------------------| | MC100EP17DTG | TSSOP-20 WB
(Pb-Free) | 75 Units /
Tube | ## **DISCONTINUED** (Note 1) | MC10EP17DTG | TSSOP-20 WB | 75 Units / | |-------------|-------------|------------| | | (Pb-Free) | Tube | DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com. ^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>. **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |------------------|-------------------------------| | D[0:3]*, D[0:3]* | ECL Differential Data Inputs | | Q[0:3], Q[0:3] | ECL Differential Data Outputs | | V_{BB} | Reference Voltage Output | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | ^{*} Pins will default LOW when left open. Figure 1. 20-Lead Pinout (Top View) and Logic Diagram #### **Table 2. ATTRIBUTES** | Characteristics | Value | |--|-----------------------------| | Internal Input Pulldown Resistor | 75 kΩ | | Internal Input Pullup Resistor | N/A | | ESD Protection Human Body Model Machine Model Charged Device Model | > 2 kV
> 100 V
> 2 kV | | Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Pb-Free Pkg | | TSSOP-20 WB | Level 3 | | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | 259 Devices | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | ^{1.} For additional information, see Application Note AND8003/D. **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |------------------|--|--|---|-------------|------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 6 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -6 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$ | 6
-6 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | ± 0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θ_{JA} | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-20 WB | 140
100 | °C/W | | θJC | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-20 WB | 23 to 41 | °C/W | | T _{sol} | Wave Solder (Pb-Free) | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. 10EP DC CHARACTERISTICS, PECL ($V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1)) | | | -40°C | | | | 25°C | | | | | | |--------------------|---|-------|------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 42 | 50 | 65 | 44 | 52 | 66 | 46 | 54 | 68 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2165 | 2290 | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 1365 | 1490 | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2090 | | 2415 | 2155 | | 2480 | 2215 | | 2540 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 365 | | 1690 | 1430 | | 1755 | 1490 | | 1815 | mV | | V _{BB} | Output Voltage Reference | 1790 | 1890 | 1990 | 1855 | 1955 | 2055 | 1915 | 2015 | 2115 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 3) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | ^{1.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. All loading with 50 Ω to V_{CC} - 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 5. 10EP DC CHARACTERISTICS, PECL (V_{CC} = 5.0 V, V_{EE} = 0 V (Note 1)) | | | 1 | −40°C | | | | | | | | | |--------------------|---|------|-------|------|------|-------------|------|------|-------------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | 25°C
Typ | Max | Min | 85°C
Typ | Max | Unit | | I _{EE} | Power Supply Current | 42 | 50 | 65 | 44 | 52 | 66 | 46 | 54 | 68 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3865 | 3990 | 4115 | 3930 | 4055 | 4180 | 3990 | 4115 | 4240 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3065 | 3190 | 3315 | 3130 | 3255 | 3380 | 3190 | 3315 | 3440 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3790 | | 4115 | 3855 | | 4180 | 3915 | | 4240 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3065 | | 3390 | 3130 | | 3455 | 3190 | | 3515 | mV | | V _{BB} | Output Voltage Reference | 3490 | 3590 | 3690 | 3555 | 3655 | 3755 | 3615 | 3715 | 3815 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 3) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μА | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 6. 10EP DC CHARACTERISTICS, NECL ($V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|-------------------|-------|-------|-----------------|-------|-------|-------------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 42 | 50 | 65 | 44 | 52 | 66 | 46 | 54 | 68 | mA | | VOH | Output HIGH Voltage (Note 2) | -1135 | -1010 | -885 | -1070 | -945 | -820 | -1010 | -885 | -760 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1935 | -1810 | -1685 | -1870 | -1745 | -1620 | -1810 | -1685 | -1560 | mV | | V_{IH} | Input HIGH Voltage (Single-Ended) | -1210 | | -885 | -1145 | | -820 | -1085 | | -760 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | -1935 | | -1610 | -1870 | | -1545 | -1810 | | -1485 | mV | | V_{BB} | Output Voltage Reference | -1510 | -1410 | -1310 | -1445 | -1345 | -1245 | -1385 | -1285 | -1185 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 3) | V _{EE} - | + 2.0 | 0.0 | V _{EE} | + 2.0 | 0.0 | V _{EE} - | + 2.0 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | - 1. Input and output parameters vary 1:1 with V_{CC}. - All loading with 50 Ω to V_{CC} 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 7. 100EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1)) | | | | -40°C | | | 25°C | | | | | | |--------------------|---|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 47 | 55 | 63 | 50 | 58 | 66 | 54 | 62 | 70 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V_{OL} | Output LOW Voltage (Note 2) | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | | V_{IH} | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | 1355 | | 1675 | 1355 | | 1675 | 1355 | | 1675 | mV | | V_{BB} | Output Voltage Reference | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 3) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | Ι _{ΙL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. - 2. All loading with 50 Ω to V_{CC} 2.0 V. - 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential Table 8. 100EP DC CHARACTERISTICS, PECL ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1)) | | | | -40°C | | | 25°C | | | | | | |--------------------|---|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 47 | 55 | 63 | 50 | 58 | 66 | 54 | 62 | 70 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | | V _{OL} | Output LOW Voltage (Note 2) | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3775 | | 4120 | 3775 | | 4120 | 3775 | | 4120 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | 3055 | | 3375 | 3055 | | 3375 | 3055 | | 3375 | mV | | V_{BB} | Output Voltage Reference | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 3) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | - 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. - All loading with 50 Ω to V_{CC} 2.0 V. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 9. 100EP DC CHARACTERISTICS, NECL ($V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 1)) | | | | -40°C | | | 25°C | | | 85°C | | | |--------------------|---|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 47 | 55 | 63 | 50 | 58 | 66 | 54 | 62 | 70 | mA | | V _{OH} | Output HIGH Voltage (Note 2) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | V _{OL} | Output LOW Voltage (Note 2) | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1225 | | -880 | -1225 | | -880 | -1225 | | -880 | mV | | V_{IL} | Input LOW Voltage (Single-Ended) | -1945 | | -1625 | -1945 | | -1625 | -1945 | | -1625 | mV | | V _{BB} | Output Voltage Reference | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential) (Note 3) | V _{EE} | + 2.0 | 0.0 | V _{EE} | + 2.0 | 0.0 | V _{EE} | + 2.0 | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 1. Input and output parameters vary 1:1 with V $_{CC}$. 2. All loading with 50 Ω to V $_{CC}$ 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. $\textbf{Table 10. AC CHARACTERISTICS ($V_{CC}=0$ V; $V_{EE}=-3.0$ V to -5.5 V or $V_{CC}=3.0$ V to 5.5 V; $V_{EE}=0$ V (Note 1)$}$ | | | | -40°C | | | 25°C | | | 85°C | | | |--|---|------------|---|---------------------------------|------------|---|---------------------------------|------------|---|---------------------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency (Figure 2) | | > 3 | | | > 3 | | | > 3 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to Output Differential
10 Series
100 Series | 125
150 | 200
220 | 275
300 | 150
180 | 220
250 | 300
320 | 200
200 | 260
290 | 350
360 | ps | | t _{JITTER} | CLOCK Random Jitter (RMS) @ ≤ 1.0 GHz @ ≤ 1.5 GHz @ ≤ 2.0 GHz @ ≤ 2.5 GHz @ ≤ 3.0 GHz | | 0.132
0.143
0.148
0.129
0.129 | 0.2
0.3
0.3
0.3
0.3 | | 0.147
0.159
0.146
0.131
0.142 | 0.2
0.3
0.3
0.3
0.3 | | 0.154
0.156
0.169
0.147
0.168 | 0.3
0.3
0.3
0.3
0.3 | ps | | V _{PP} | Input Voltage Swing
(Differential Configuration) | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | t _r
t _f | Output Rise/Fall Times
Q, (20% – 80%) | 100 | 160 | 220 | 100 | 170 | 230 | 120 | 190 | 250 | ps | ^{1.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC – 2.0 V. Figure 2. F_{max}/Jitter Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note $\underline{\text{AND8020/D}}$ – Termination of ECL Logic Devices.) ### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AND8001/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices ECLinPS is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **DATE 17 FEB 2016** **DETAIL E** ## NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE - INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE - DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | 7 | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | M | 0° | 8° | 0° | 8° | #### **RECOMMENDED SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | | onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales