

# 3.3V / 5V ECL 4:1 Differential Multiplexer MC10EP57, MC100EP57

## **Description**

The MC10/100EP57 is a fully differential 4:1 multiplexer. By leaving the SEL1 line open (pulled LOW via the input pulldown resistors) the device can also be used as a differential 2:1 multiplexer with SEL0 input selecting between D0 and D1. The fully differential architecture of the EP57 makes it ideal for use in low skew applications such as clock distribution.

The SEL1 is the most significant select line. The binary number applied to the select inputs will select the same numbered data input (i.e., 00 selects D0).

Multiple  $V_{BB}$  outputs are provided. The  $V_{BB}$  pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to  $V_{BB}$  as a switching reference voltage.  $V_{BB}$  may also rebias AC coupled inputs. When used, decouple  $V_{BB}$  and  $V_{CC}$  via a 0.01  $\mu F$  capacitor and limit current sourcing or sinking to 0.5 mA. When not used,  $V_{BB}$  should be left open.

The 100 Series contains temperature compensation.

#### **Features**

- 375 ps Typical Propagation Delays
- Maximum Frequency > 2 GHz Typical
- PECL Mode Operating Range:
   V<sub>CC</sub> = 3.0 V to 5.5 V with V<sub>EE</sub> = 0 V
- NECL Mode Operating Range:
- $V_{CC} = 0 \text{ V}$  with  $V_{EE} = -3.0 \text{ V}$  to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- Q Output will default LOW with inputs open or at V<sub>EE</sub>
- · VBB Outputs
- Useful as Either 4:1 or 2:1 Multiplexer
- These Devices are Pb-Free and are RoHS Compliant





TSSOP-20 DT SUFFIX CASE 948E QFN-20 MN SUFFIX CASE 485E

#### MARKING DIAGRAM

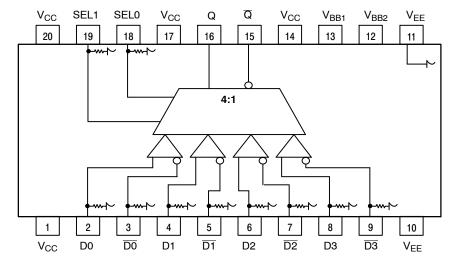




xxx = MC10 or 100 A = Assembly Location

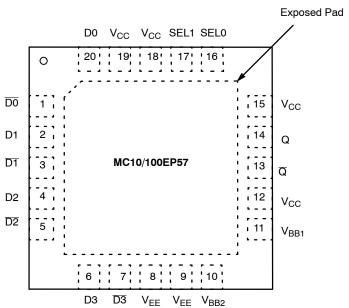
L = Wafer Lot Y = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)


\*For additional marking information, refer to Application Note AND8002/D.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.


NOTE: Some of the device on this data sheet have been **DISCONTINUED**. Please refer to the table on page 8.

1



Warning: All  $V_{CC}$  and  $V_{EE}$  pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Package (Top View) and Logic Diagram



NOTE: The Exposed Pad (EP) on package bottom must be attached to a heat–sinking conduit. The Exposed Pad may only be electrically connected to V<sub>EE</sub>.

Figure 1. QFN-20 Pinout (Top View)

**Table 1. PIN DESCRIPTION** 

| PIN                                 | FUNCTION                     |
|-------------------------------------|------------------------------|
| D0 – 3*, <del>D0 – 3</del> *        | ECL Differential Data Inputs |
| SEL0*, SEL1*                        | ECL MUX Select Inputs        |
| V <sub>BB1</sub> , V <sub>BB2</sub> | ECL Reference Output Voltage |
| Q, Q                                | ECL Data Outputs             |
| V <sub>CC</sub>                     | Positive Supply              |
| V <sub>EE</sub>                     | Negative Supply              |
| EP                                  | Exposed Pad                  |

<sup>\*</sup>Pins will default LOW when left open.

Table 2. TRUTH TABLE

| SEL1 | SEL0 | DATA OUT           |
|------|------|--------------------|
| L    | L    | D0, <del>D0</del>  |
| L    | Н    | D1, <del>D1</del>  |
| Н    | L    | D2, <del>D</del> 2 |
| Н    | Н    | D3, <del>D</del> 3 |

**Table 3. ATTRIBUTES** 

| Characteri                            | stics                                                     | Va             | lue                |  |  |
|---------------------------------------|-----------------------------------------------------------|----------------|--------------------|--|--|
| Internal Input Pulldown Resistor      | 75 kΩ                                                     |                |                    |  |  |
| Internal Input Pullup Resistor        | N                                                         | /A             |                    |  |  |
| ESD Protection                        | Human Body Model<br>Machine Model<br>Charged Device Model | > 10           | kV<br>00 V<br>! kV |  |  |
| Moisture Sensitivity, Indefinite Time | e Out of Drypack (Note 1)                                 | Pb Pkg         | Pb-Free Pkg        |  |  |
|                                       | TSSOP-20<br>QFN-20                                        | Level 1<br>N/A | Level 3<br>Level 1 |  |  |
| Flammability Rating                   | Oxygen Index: 28 to 34                                    | UL 94 V-0      | @ 0.125 in         |  |  |
| Transistor Count                      |                                                           | 584 D          | evices             |  |  |
| Meets or exceeds JEDEC Spec El        | IA/JESD78 IC Latchup Test                                 |                |                    |  |  |

<sup>1.</sup> For additional information, see Application Note AND8003/D.

**Table 4. MAXIMUM RATINGS** 

| Symbol            | Parameter                                          | Condition 1                                    | Condition 2                                | Rating      | Unit         |
|-------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------|-------------|--------------|
| V <sub>CC</sub>   | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                            | 6           | V            |
| V <sub>EE</sub>   | NECL Mode Power Supply                             | V <sub>CC</sub> = 0 V                          |                                            | -6          | V            |
| VI                | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $V_{I} \leq V_{CC}$<br>$V_{I} \geq V_{EE}$ | 6<br>-6     | V<br>V       |
| l <sub>out</sub>  | Output Current                                     | Continuous<br>Surge                            |                                            | 50<br>100   | mA<br>mA     |
| I <sub>BB</sub>   | V <sub>BB</sub> Sink/Source                        |                                                |                                            | ± 0.5       | mA           |
| T <sub>A</sub>    | Operating Temperature Range                        |                                                |                                            | -40 to +85  | °C           |
| T <sub>stg</sub>  | Storage Temperature Range                          |                                                |                                            | -65 to +150 | °C           |
| $\theta_{JA}$     | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | TSSOP-20<br>TSSOP-20                       | 140<br>100  | °C/W<br>°C/W |
| θЈС               | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | TSSOP-20                                   | 23 to 41    | °C/W         |
| $\theta_{JA}$     | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | QFN-20<br>QFN-20                           | 47<br>33    | °C/W<br>°C/W |
| $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | QFN-20                                     | 18          | °C/W         |
| T <sub>sol</sub>  | Wave Solder Pb Pb-Free                             |                                                |                                            | 265<br>265  | °C           |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. 10EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 3.3 V, V<sub>EE</sub> = 0 V (Note 2)

|                    |                                                                                  |      | -40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|----------------------------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                                   | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                             | 40   | 52    | 65   | 40   | 52   | 65   | 40   | 52   | 65   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 3)                                                     | 2165 | 2290  | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 3)                                                      | 1365 | 1490  | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                | 2090 |       | 2415 | 2155 |      | 2480 | 2215 |      | 2540 | mV   |
| $V_{IL}$           | Input LOW Voltage (Single-Ended)                                                 | 1365 |       | 1690 | 1460 |      | 1755 | 1490 |      | 1815 | mV   |
| V <sub>BB</sub>    | Output Voltage Reference                                                         | 1790 | 1835  | 1990 | 1855 | 1900 | 2055 | 1915 | 1960 | 2115 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 4) | 2.0  |       | 3.3  | 2.0  |      | 3.3  | 2.0  |      | 3.3  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                               |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                                | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 2. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +0.3 V to -2.2 V.
- 3. All loading with 50  $\Omega$  to  $V_{CC}$  2.0 V.
- 4. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 6. 10EP DC CHARACTERISTICS, PECL  $V_{CC}$  = 5.0 V,  $V_{EE}$  = 0 V (Note 5)

|                    |                                                                                  |      | -40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|----------------------------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                                   | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                             | 40   | 52    | 65   | 40   | 52   | 65   | 40   | 52   | 65   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 6)                                                     | 3865 | 3990  | 4115 | 3930 | 4055 | 4180 | 3990 | 4115 | 4240 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 6)                                                      | 3065 | 3190  | 3315 | 3130 | 3255 | 3380 | 3190 | 3315 | 3440 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                | 3790 |       | 4115 | 3855 |      | 4180 | 3915 |      | 4240 | mV   |
| $V_{IL}$           | Input LOW Voltage (Single-Ended)                                                 | 3065 |       | 3390 | 3130 |      | 3455 | 3190 |      | 3515 | mV   |
| $V_{BB}$           | Output Voltage Reference                                                         | 3490 | 3535  | 3690 | 3555 | 3600 | 3755 | 3685 | 3660 | 3815 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 7) | 2.0  |       | 5.0  | 2.0  |      | 5.0  | 2.0  |      | 5.0  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                               |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                                | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 5. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +2.0 V to -0.5 V.
- 6. All loading with 50  $\Omega$  to  $V_{CC}$  2.0 V.
- 7. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 7. 10EP DC CHARACTERISTICS, NECL  $V_{CC} = 0 \text{ V}$ ,  $V_{EE} = -5.5 \text{ V}$  to -3.0 V (Note 8)

|                 |                                                                                   |                 | -40°C |       |                 | 25°C  |       |                 | 85°C  |       |      |
|-----------------|-----------------------------------------------------------------------------------|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------|
| Symbol          | Characteristic                                                                    | Min             | Тур   | Max   | Min             | Тур   | Max   | Min             | Тур   | Max   | Unit |
| I <sub>EE</sub> | Power Supply Current                                                              | 40              | 52    | 65    | 40              | 52    | 65    | 40              | 52    | 65    | mA   |
| VOH             | Output HIGH Voltage (Note 9)                                                      | -1135           | -1010 | -885  | -1070           | -945  | -820  | -1010           | -885  | -760  | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 9)                                                       | -1935           | -1810 | -1685 | -1870           | -1745 | -1620 | -1810           | -1685 | -1560 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single-Ended)                                                 | -1210           |       | -885  | -1145           |       | -820  | -1085           |       | -760  | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single-Ended)                                                  | -1935           |       | -1610 | -1870           |       | -1545 | -1810           |       | -1485 | mV   |
| V <sub>BB</sub> | Output Voltage Reference                                                          | -1510           | -1465 | -1310 | -1445           | -1400 | -1245 | -1385           | -1340 | -1185 | mV   |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 10) | V <sub>EE</sub> | + 2.0 | 0.0   | V <sub>EE</sub> | + 2.0 | 0.0   | V <sub>EE</sub> | + 2.0 | 0.0   | V    |
| I <sub>IH</sub> | Input HIGH Current                                                                |                 |       | 150   |                 |       | 150   |                 |       | 150   | μΑ   |
| I <sub>IL</sub> | Input LOW Current                                                                 | 0.5             |       |       | 0.5             |       |       | 0.5             |       |       | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 8. 100EP DC CHARACTERISTICS, PECL  $V_{CC} = 3.3 \text{ V}$ ,  $V_{EE} = 0 \text{ V}$  (Note 11)

|                    |                                                                                   |      | -40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|-----------------------------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                                    | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                              | 40   | 52    | 65   | 40   | 52   | 65   | 40   | 52   | 65   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 12)                                                     | 2155 | 2280  | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 12)                                                      | 1305 | 1480  | 1605 | 1305 | 1480 | 1605 | 1305 | 1480 | 1605 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                 | 2075 |       | 2420 | 2075 |      | 2420 | 2075 |      | 2420 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)                                                  | 1305 |       | 1675 | 1305 |      | 1675 | 1305 |      | 1675 | mV   |
| $V_{BB}$           | Output Voltage Reference                                                          | 1775 | 1875  | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 13) | 2.0  |       | 3.3  | 2.0  |      | 3.3  | 2.0  |      | 3.3  | ٧    |
| I <sub>IH</sub>    | Input HIGH Current                                                                |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                                 | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

<sup>8.</sup> Input and output parameters vary 1:1 with V<sub>CC</sub>.

<sup>9.</sup> All loading with 50  $\Omega$  to  $V_{CC}$  – 2.0 V.

<sup>10.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

<sup>11.</sup> Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +0.3 V to -2.2 V.

<sup>12.</sup> All loading with 50  $\Omega$  to  $V_{CC}$  – 2.0 V.

<sup>13.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 9. 100EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 5.0 V, V<sub>EE</sub> = 0 V (Note 14)

|                    |                                                                                   |      | -40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|-----------------------------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                                    | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                              | 40   | 52    | 65   | 40   | 52   | 65   | 40   | 52   | 65   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 15)                                                     | 3855 | 3980  | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 15)                                                      | 3005 | 3180  | 3305 | 3005 | 3180 | 3305 | 3005 | 3180 | 3305 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                 | 3775 |       | 4120 | 3775 |      | 4120 | 3775 |      | 4120 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)                                                  | 3005 |       | 3375 | 3005 |      | 3375 | 3005 |      | 3375 | mV   |
| V <sub>BB</sub>    | Output Voltage Reference                                                          | 3475 | 3575  | 3675 | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 16) | 2.0  |       | 5.0  | 2.0  |      | 5.0  | 2.0  |      | 5.0  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                                 | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 10. 100EP DC CHARACTERISTICS, NECL  $V_{CC} = 0 \text{ V}$ ,  $V_{EE} = -5.5 \text{ V}$  to -3.0 V (Note 17)

|                    |                                                                                   |                 | -40°C |       |                 | 25°C  |       |                 |       |       |      |
|--------------------|-----------------------------------------------------------------------------------|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------|
| Symbol             | Characteristic                                                                    | Min             | Тур   | Max   | Min             | Тур   | Max   | Min             | Тур   | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                              | 40              | 52    | 65    | 40              | 52    | 65    | 40              | 52    | 65    | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 18)                                                     | -1145           | -1020 | -895  | -1145           | -1020 | -895  | -1145           | -1020 | -895  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 18)                                                      | -1995           | -1820 | -1695 | -1995           | -1820 | -1695 | -1995           | -1820 | -1695 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single-Ended)                                                 | -1225           |       | -880  | -1225           |       | -880  | -1225           |       | -880  | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single-Ended)                                                  | -1995           |       | -1625 | -1995           |       | -1625 | -1995           |       | -1625 | mV   |
| $V_{BB}$           | Output Voltage Reference                                                          | -1525           | -1425 | -1325 | -1525           | -1425 | -1325 | -1525           | -1425 | -1325 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 19) | V <sub>EE</sub> | + 2.0 | 0.0   | V <sub>EE</sub> | + 2.0 | 0.0   | V <sub>EE</sub> | + 2.0 | 0.0   | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                |                 |       | 150   |                 |       | 150   |                 |       | 150   | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                                 | 0.5             |       |       | 0.5             |       |       | 0.5             |       |       | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

<sup>14.</sup> Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +2.0 V to -0.5 V.

<sup>15.</sup> All loading with 50  $\Omega$  to  $V_{CC}$  – 2.0 V.

<sup>16.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

<sup>17.</sup> Input and output parameters vary 1:1 with  $V_{CC}$ .

<sup>18.</sup> All loading with 50  $\Omega$  to  $V_{CC}$  – 2.0 V.

<sup>19.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

Table 11. AC CHARACTERISTICS  $V_{CC} = 0 \text{ V}$ ;  $V_{EE} = -3.0 \text{ V}$  to -5.5 V or  $V_{CC} = 3.0 \text{ V}$  to 5.5 V;  $V_{EE} = 0 \text{ V}$  (Note 20)

|                                        |                                                                                                    |            | -40°C                                              |                                        |            | 25°C                                               |                                        |            | 85°C                                               |                                        |      |
|----------------------------------------|----------------------------------------------------------------------------------------------------|------------|----------------------------------------------------|----------------------------------------|------------|----------------------------------------------------|----------------------------------------|------------|----------------------------------------------------|----------------------------------------|------|
| Symbol                                 | Characteristic                                                                                     | Min        | Тур                                                | Max                                    | Min        | Тур                                                | Max                                    | Min        | Тур                                                | Max                                    | Unit |
| f <sub>max</sub>                       | Maximum Frequency (Figure 2)                                                                       |            | > 3                                                |                                        |            | > 3                                                |                                        |            | > 3                                                |                                        | GHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to Output Differential  D to Q, Q  COM_SEL, SEL to Q, Q                          | 250<br>300 | 350<br>400                                         | 450<br>500                             | 275<br>320 | 375<br>420                                         | 475<br>520                             | 320<br>320 | 420<br>450                                         | 520<br>575                             | ps   |
| t <sub>SKEW</sub>                      | Device to Device Skew (Note 21)                                                                    |            |                                                    | 200                                    |            |                                                    | 200                                    |            |                                                    | 200                                    | ps   |
| t <sub>JITTER</sub>                    | CLOCK Random Jitter (RMS)  @ ≤ 0.5 GHz @ ≤ 1.0 GHz @ ≤ 1.5 GHz @ ≤ 2.0 GHz @ ≤ 2.5 GHz @ ≤ 3.0 GHz |            | 0.122<br>0.110<br>0.112<br>0.128<br>0.114<br>0.116 | 0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 |            | 0.140<br>0.135<br>0.132<br>0.139<br>0.129<br>0.152 | 0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 |            | 0.172<br>0.151<br>0.152<br>0.163<br>0.177<br>0.305 | 0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>1.0 | ps   |
| V <sub>PP</sub>                        | Input Voltage Swing (Differential Configuration)                                                   | 150        | 800                                                | 1200                                   | 150        | 800                                                | 1200                                   | 150        | 800                                                | 1200                                   | mV   |
| t <sub>r</sub>                         | Output Rise/Fall Times Q, Q (20% – 80%)                                                            | 70         | 120                                                | 170                                    | 70         | 140                                                | 200                                    | 70         | 150                                                | 220                                    | ps   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

20. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50  $\Omega$  to  $V_{CC}$  – 2.0 V. 21. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

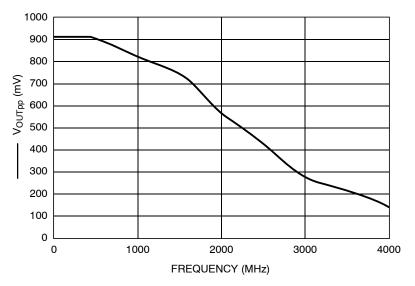



Figure 2. F<sub>max</sub>

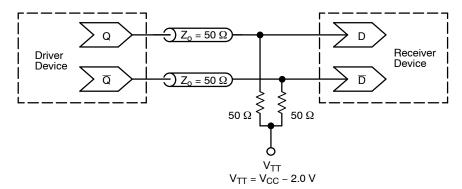



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

## **ORDERING INFORMATION**

| Device         | Package               | Shipping <sup>†</sup> |
|----------------|-----------------------|-----------------------|
| MC10EP57DTG    | TSSOP-20<br>(Pb-Free) | 75 Units / Rail       |
| MC10EP57DTR2G  | TSSOP-20<br>(Pb-Free) | 2500 / Tape & Reel    |
| MC100EP57DTG   | TSSOP-20<br>(Pb-Free) | 75 Units / Rail       |
| MC100EP57DTR2G | TSSOP-20<br>(Pb-Free) | 2500 / Tape & Reel    |

## **DISCONTINUED** (Note 22)

| Device         | Package             | Shipping <sup>†</sup> |
|----------------|---------------------|-----------------------|
| MC10EP57MNG    | QFN-20<br>(Pb-Free) | 92 Units / Rail       |
| MC10EP57MNTXG  | QFN-20<br>(Pb-Free) | 3000 / Tape & Reel    |
| MC100EP57MNG   | QFN-20<br>(Pb-Free) | 92 Units / Rail       |
| MC100EP57MNTXG | QFN-20<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <a href="https://example.com/BRD8011/D">BRD8011/D</a>.

<sup>22.</sup> **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on <a href="https://www.onsemi.com">www.onsemi.com</a>.

## **Resource Reference of Application Notes**

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AND8001/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales