

Binary/Decade Up/Down Counter

MC14029B

The MC14029B Binary/Decade up/down counter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The counter consists of type D flip-flop stages with a gating structure to provide toggle flip-flop capability. The counter can be used in either Binary or BCD operation. This complementary MOS counter finds primary use in up/down and difference counting and frequency synthesizer applications where low power dissipation and/or high noise immunity is desired. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design Count Occurs on Positive Going Edge of Clock
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Pin for Pin Replacement for CD4029B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

SOIC-16

D SUFFIX

CASE 751B

MARKING DIAGRAM

A = Assembly Location

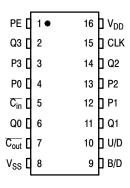
WL = Wafer Lot
 YY, Y = Year
 WW = Work Week
 G = Pb-Free Indicator

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	−55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _L	Lead Temperature (8-Second Soldering)	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

^{1.} Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65 °C To 125 °C

PIN ASSIGNMENT

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Action
1	Х	0	No Count
0	1	0	Count Up
0	0	0	Count Down
Х	X	1	Preset

X = Don't Care

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14029BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14029BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*} NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				-55	°C		25 °C		125	°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage	"0" Level	V_{OL}	5.0	_	0.05	_	0	0.05	_	0.05	Vdc
$V_{in} = V_{DD}$ or 0			10	_	0.05	_	0	0.05	_	0.05	
			15	_	0.05	-	0	0.05	-	0.05	
	"1" Level	V _{OH}	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
$V_{in} = 0$ or V_{DD}	. 2010	• • • •	10	9.95	_	9.95	10	_	9.95	_	
VIN = 0 01 VDD			15	14.95	-	14.95	15	-	14.95	-	
Input Voltage	"0" Level	V_{IL}									Vdc
$(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$			5.0	_	1.5	_	2.25	1.5	_	1.5	
$(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$			10	_	3.0	_	4.50	3.0	_	3.0	
$(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$			15	_	4.0	_	6.75	4.0	_	4.0	
	"1" Level	V _{IH}									Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$. 2010.		5.0	3.5	_	3.5	2.75	_	3.5	_	
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$			10	7.0	_	7.0	5.50	_	7.0	_	
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$			15	11	_	11	8.25	-	11	_	
Output Drive Current		Іон									mAdc
(V _{OH} = 2.5 Vdc)	Source	OII	5.0	-3.0	_	-2.4	-4.2	_	-1.7	_	
$(V_{OH} = 4.6 \text{ Vdc})$			5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	
$(V_{OH} = 9.5 \text{ Vdc})$			10	-1.6	_	-1.3	-2.25	_	-0.9	_	
(V _{OH} = 13.5 Vdc)			15	-4.2	_	-3.4	-8.8	-	-2.4	_	
$(V_{OL} = 0.4 \text{ Vdc})$	Sink	I _{OL}	5.0	0.64	_	0.51	0.88	_	0.36	_	mAdc
$(V_{OL} = 0.5 \text{ Vdc})$		02	10	1.6	_	1.3	2.25	_	0.9	_	
$(V_{OL} = 1.5 \text{ Vdc})$			15	4.2	_	3.4	8.8	_	2.4	_	
Input Current		I _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance, (V _{in} = 0)		C _{in}	_	_	_	-	5.0	7.5	-	_	pF
Quiescent Current		I _{DD}	5.0	_	5.0	_	0.005	5.0	-	150	μAdc
(Per Package)			10	_	10	_	0.010	10	_	300	1
			15	_	20	_	0.015	20	-	600	
Total Supply Current (Notes 3	& 4)	Ι _Τ	5.0		•	I _T = (0	.58 μA/kHz)	f + I _{DD}	•	•	μAdc
(Dynamic plus Quiescent, Pe	er Package)		10			$I_{T} = (1$.20 μA/kHz)	f + I _{DD}			
(C _L = 50 pF on all outputs, switching)	all buffers		15			$I_T = (1$.70 μA/kHz)	f + I _{DD}			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions, unless otherwise in performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25 °C.

4. To calculate total supply current at loads other than 50 pF:

I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vf}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25 ^{\circ}\text{C}$)

				All Types		
Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns}$ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns}$ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clk to Q $t_{PLH},t_{PHL}=(1.7\;\text{ns/pF})\;C_L+230\;\text{ns}$ $t_{PLH},t_{PHL}=(0.66\;\text{ns/pF})\;C_L+97\;\text{ns}$ $t_{PLH},t_{PHL}=(0.5\;\text{ns/pF})\;C_L+75\;\text{ns}$	t _{PLH} , t _{PHL}	5.0 10 15	- - -	200 100 90	400 200 180	ns
Clk to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 230 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 97 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 75 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	250 130 85	500 260 190	ns
$\overline{C_{in}}$ to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 95 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 47 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 35 ns	t _{PLH} , t _{PHL}	5.0 10 15		175 50 50	360 120 100	ns
PE to Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 230 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 97 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 75 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	235 100 80	470 200 160	ns
PE to $\overline{C_{out}}$ t_{PLH} , t_{PHL} = (1. 7 ns/pF) C_L + 465 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 192 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 125 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	320 145 105	640 290 210	ns
Clock Pulse Width	t _{W(cl)}	5.0 10 15	180 80 60	90 40 30	- - -	ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	4.0 8.0 10	2.0 4.0 5.0	MHz
Preset Removal Time The Preset Signal must be low prior to a positive-going transition of the clock.	t _{rem}	5.0 10 15	160 80 60	80 40 30	1 1 1	ns
Clock Rise and Fall Time	$t_{\text{r(Cl)}} \\ t_{\text{f(Cl)}}$	5.0 10 1 5	- - -	- - -	15 5 4	μs
Carry In Setup Time	t _{su}	5.0 10 15	150 60 40	75 30 20	- - -	ns
Up/Down Setup Time		5.0 10 15	340 140 100	170 70 50	- - -	ns
Binary/Decade Setup Time		5.0 10 15	320 140 100	160 70 50	- - -	ns
Preset Enable Pulse Width	t _W	5.0 10 15	130 70 50	65 35 25	- - -	ns

^{5.} The formulas given are for the typical characteristics only at 25 °C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

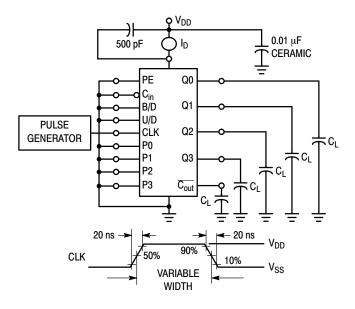


Figure 1. Power Dissipation Test Circuit and Waveform

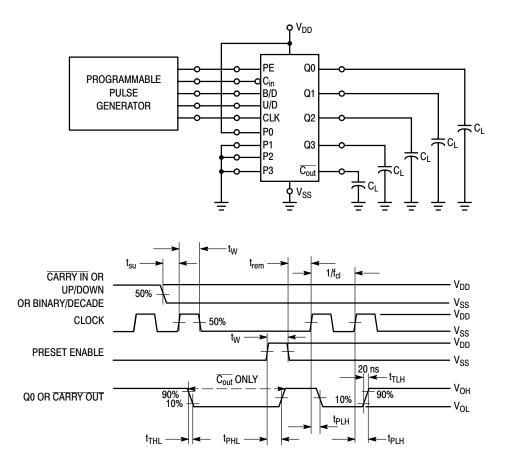
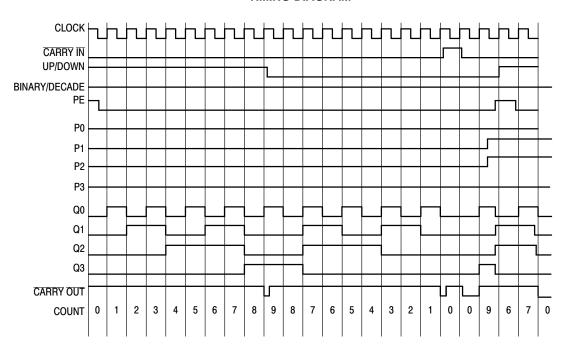
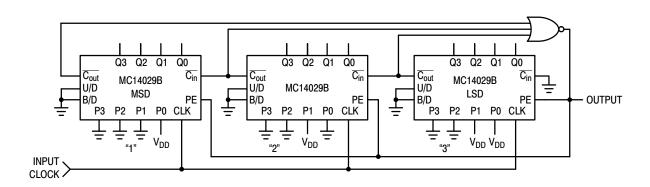




Figure 2. Switching Time Test Circuit and Waveforms

TIMING DIAGRAM

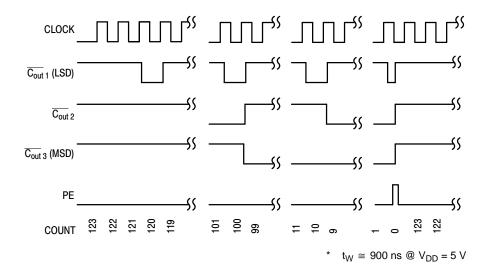
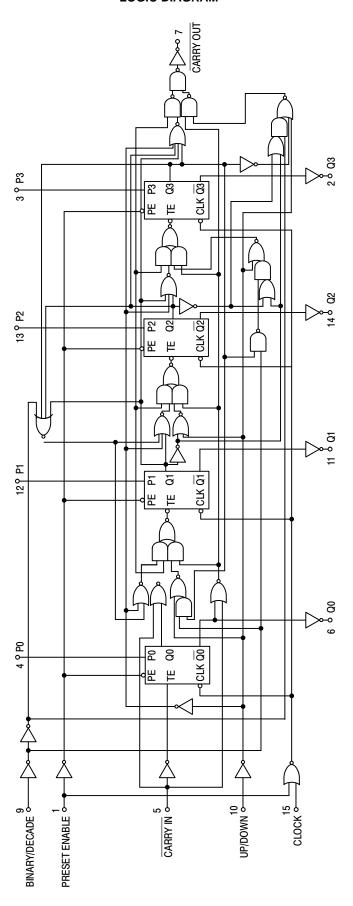



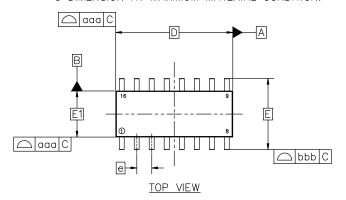
Figure 3. Divide by N BCD Down Counter and Timing Diagram (Shown for N = 123)

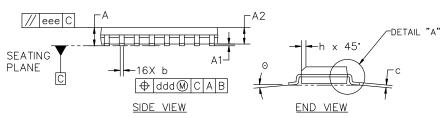
LOGIC DIAGRAM

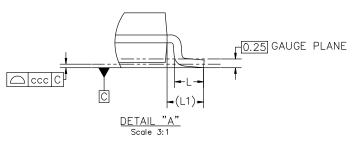
REVISION HISTORY

Revision	Description of Changes	Date
12	Rebranded the Data Sheet to onsemi format.	8/26/2025

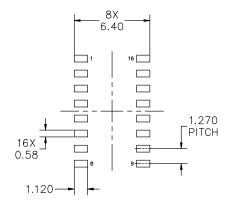
This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

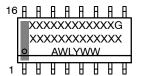

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS							
DIM	MIN	NOM	MAX				
А	1.35	1.55	1.75				
A1	0.10	0.18	0.25				
A2	1.25	1.37	1.50				
b	0.35	0.42	0.49				
С	0.19	0.22	0.25				
D		9.90 BSC					
E	6.00 BSC						
E1	3.90 BSC						
е		1.27 BSC					
h	0.25		0.50				
L	0.40	0.83	1.25				
L1		1.05 REF					
Θ	0.		7*				
TOLERAN	CE OF FC	RM AND	POSITION				
aaa	0.10						
bbb	0.20						
ccc	0.10						
ddd	0.25						
eee		0.10					

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	SOIC-16 9.90X3.90X1.37 1.27P		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH		
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
9.	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4	10	ANODE	10.	COMMON DRAIN (OUTPUT)		
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT)		
12.	GATE, #3 SOURCE, #3	11. 12.	ANODE ANODE	11. 12.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
12. 13.	GATE, #3 SOURCE, #3 GATE, #2	11. 12. 13.	ANODE ANODE ANODE	11. 12. 13.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH		
12. 13. 14.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	11. 12. 13. 14.	ANODE ANODE ANODE ANODE	11. 12. 13. 14.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		
12. 13. 14. 15.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1	11. 12. 13. 14. 15.	ANODE ANODE ANODE ANODE ANODE	11. 12. 13. 14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
12. 13. 14.	GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2	11. 12. 13. 14.	ANODE ANODE ANODE ANODE	11. 12. 13. 14.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	the Document Repository. COPY" in red.	
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	SOIC-16 9.90X3.90X1.37 1.27P	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales