Octal D Flip-Flop with Common Clock and Enable # **High-Performance Silicon-Gate CMOS** The MC74HC377A is identical in pinout to the LS273. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of eight D flip-flops with common Clock and Enable (\overline{E}) inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Enable (\overline{E}) is active low. #### Features - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1.0 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No. 7A - Chip Complexity: 264 FETs or 66 Equivalent Gates - These are Pb-Free Devices #### ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS TSSOP-20 DT SUFFIX CASE 948E A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Package = Pb-Free Package (Note: Microdot may be in either location) #### **PIN ASSIGNMENT** | Ē | 1● | 20 | v _{cc} | |-------|----|----|-----------------| | Q0 [| 2 | 19 |] Q7 | | D0 [| 3 | 18 | D7 | | D1 [| 4 | 17 | D6 | | Q1 [| 5 | 16 | Q6 | | Q2 [| 6 | 15 |] Q5 | | D2 [| 7 | 14 | D5 | | D3 [| 8 | 13 | D4 | | Q3 [| 9 | 12 |] Q4 | | GND [| 10 | 11 | СГОСК | | | | | • | #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Figure 1. Logic Diagram #### **FUNCTION TABLE** | Onenatina | | Outputs | | | |--------------------|----------|---------|----|------------------------| | Operating
Modes | Clock | Ē | Dn | Qn | | Load "1" | ↑ | 1 | h | Н | | Load "0" | ↑ | Ţ | 1 | L | | Hold (Do Nothing) | ↑
X | h
H | X | No Change
No Change | H = HIGH voltage level h = HIGH voltage level one setup time prior to the LOW-to- HIGH CP transition L = LOW voltage level I = LOW voltage level one setup time prior to the LOW-to-HIGH CP transition ↑ = LOW-to-HIGH CP transition X = Don't Care | Design Criteria | Value | Units | |---------------------------------|-------|-------| | Internal Gate Count* | 66 | ea | | Internal Gate Propagation Delay | 1.5 | ns | | Internal Gate Power Dissipation | 5.0 | μW | | Speed Power Product | .0075 | рЈ | *Equivalent to a two-input NAND gate. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------------|-----------------------| | MC74HC377ADWG | SOIC-20 WIDE
(Pb-Free) | 38 Units / Rail | | MC74HC377ADWR2G | SOIC-20 WIDE
(Pb-Free) | 1000 Tape & Reel | | MC74HC377ADTG | TSSOP-20* | 75 Units / Rail | | MC74HC377ADTR2G | TSSOP-20* | 2500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}This package is inherently Pb-Free. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|--------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to V_{CC} + 0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V_{CC} + 0.5 | ٧ | | l _{in} | DC Input Current, per Pin | ±20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | P _D | Power Dissipation in Still Air SOIC Package [†] TSSOP Package [†] | 500
450 | mW | | T _{stg} | Storage Temperature | -65 to +150 | °C | #### This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. #### RECOMMENDED OPERATING CONDITIONS | T _{stg} | Storage Temperature | -65 | to +150 | °C | Unused outputs must be left open. | |--|---|-----------------|--------------------|-----------|-----------------------------------| | ratings only
Extended of
reliability.
†Derating | Exceeding Maximum Ratings may damage the device. y. Functional operation above the Recommended Opera exposure to stresses above the Recommended Operating - SOIC Package: - 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C MENDED OPERATING CONDITIONS | ting Con | nditions is n | ot implie | d. | | Symbol | Parameter | Min | Max | Unit | ME | | V _{CC} | DC Supply Voltage (Referenced to GND) | 2.0 | 6.0 | V | OP ai N | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | Vcc | V | Serriola | | T _A | Operating Temperature, All Package Types | -5 5 | +125 | °C | on All | | t, t | Input Rise and Fall Time (Figure 2) VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V | | 1000
500
400 | Ne Ne | ORIW. | #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | | Guaranteed Limit | | | | |-----------------|---|--|--|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Test Cond | itions | V _{CC}
V | –55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | V _{IH} | Minimum High-Level Input Voltage | $\begin{aligned} V_{out} &= V_{CC} - 0.1 \text{ V} \\ I_{out} &\leq 20 \mu\text{A} \end{aligned}$ | | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | ٧ | | V _{IL} | Maximum Low-Level Input Voltage | $V_{out} = 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | V | | V _{OH} | Minimum High-Level Output
Voltage | $V_{in} = V_{IH}$ $ I_{out} \le 20 \mu A$ | | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | V _{in} = V _{IH} | $\begin{aligned} & \left I_{out}\right \leq 4.0 \text{ mA} \\ & \left I_{out}\right \leq 5.2 \text{ mA} \end{aligned}$ | 4.5
6.0 | 3.98
5.48 | 3.84
5.34 | 3.7
5.2 | | | V _{OL} | Maximum Low-Level Output
Voltage | $V_{in} = V_{IL}$ $ I_{out} \le 20 \mu A$ | | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $V_{in} = V_{IL}$ | $\begin{aligned} & \left I_{out} \right \leq 4.0 \text{ mA} \\ & \left I_{out} \right \leq 5.2 \text{ mA} \end{aligned}$ | 4.5
6.0 | 0.26
0.26 | 0.33
0.33 | 0.4
0.4 | | | l _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 11/2 | 6.0 | ±0.1 | ±1.0 | ±1.0 | μΑ | | Icc | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | OF | 6.0 | 4.0 | 40 | 160 | μΑ | | | Maximum Input Leakage Current Maximum Quiescent Supply Current (per Package) | OT RECONT | INE TOP | INF | OKI | | | | ### AC Electrical Characteristics (C_L = 50 pF, Input t_r , t_f = 6.0 ns) | | | | | Gua | ranteed Lir | nits | | |-------------------------------------|---|-----------------|---------------------|-----------------|---------------|---------|------| | Symbol | Parameter | Test Conditions | V _{CC} (V) | –55°C to
25° | ≤ 85°C | ≤ 125°C | Unit | | t _{PHL} , t _{PLH} | Maximum Propagation Delay | Figures 2, 4 | 2.0 | 160 | 200 | 240 | ns | | | Clock to Qn | | 4.5 | 32 | 40 | 48 | | | | | | 6.0 | 27 | 34 | 41 | | | t _{THL} , t _{TLH} | Maximum Output Transition | Figures 2, 4 | 2.0 | 75 | 95 | 110 | ns | | | Time | | 4.5 | 15 | 19 | 22 | | | | | | 6.0 | 13 | 16 | 19 | | | t _W | Minimum Clock Pulse Width | Figure 2 | 2.0 | 80 | 100 | 120 | ns | | | High or Low | | 4.5 | 16 | 20 | 24 | | | | | | 6.0 | 4 | 17 | 20 | | | t _{su} | Minimum Set-up Time | Figure 3 | 2.0 | 60 | 75 | 90 | ns | | | D _n to Clock | on to clock | 4.5 | 12 | 15 | 18 | | | | | | 6.0 | 10 | 13 | 15 | | | t _{su} | Minimum Set-up Time
Enable to Clock | Figure 3 | 2.0 | 60 | 75 | 90 | ns | | | Enable to Clock | | 4.5 | 12 | 15 | 18 | | | | | | 6.0 | 10 | 13 | 15 | | | t _h | Minimum Hold Time
D _n to Clock | Figure 3 | 2.0 | C3 | 3 | 3 | ns | | | D _n to Clock | N/ | 4.5 | 3 | 3 | 3 | | | | | | 6.0 | 3 | 3 | 3 | | | t _h | Minimum Hold Time
Enable to Clock | Figure 3 | 2.0 | 4 | 4 | 4 | ns | | | Litable to Clock | RECTACEC | 4.5 | 4 | 4 | 4 | | | | | Figure 3 | 6.0 | 4 | 4 | 4 | | | f _{max} | Maximum Clock Pulse
Frequency (50% duty cycle) | Figures 2, 4 | 2.0 | 6 | 5 | 4 | ns | | | Tricquericy (50% duty cycle) | CEXA | 4.5 | 30 | 24 | 20 | | | | | , AS , MI | 6.0 | 35 | 28 | 24 | | | C _{in} | Maximum Input Capacitance | 1,5 | - | 10 | 10 | 10 | pF | | C _{PD} | SEF | Typical @ 25°C, V _{CC} = 5.0 V | pF | |-----------------|------------------------------|---|----| | (Note 1) | ower Dissipation Capacitance | 35 | | ^{1.} C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC} (operating) $\approx C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where N_{SW} = total number of outputs switching and f_{IN} = switching frequency. #### **SWITCHING WAVEFORMS** Figure 3. Figure 2. Figure 5. Expanded Logic Diagram SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | |-----|-------------|-------|--|--| | DIM | MIN | MAX | | | | Α | 2.35 | 2.65 | | | | A1 | 0.10 | 0.25 | | | | b | 0.35 | 0.49 | | | | С | 0.23 | 0.32 | | | | D | 12.65 | 12.95 | | | | E | 7.40 | 7.60 | | | | е | 1.27 | BSC | | | | Н | 10.05 | 10.55 | | | | h | 0.25 | 0.75 | | | | L | 0.50 | 0.90 | | | | Δ | 0 0 | 7 0 | | | #### **RECOMMENDED SOLDERING FOOTPRINT*** 18X **e** DIMENSIONS: MILLIMETERS #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. TSSOP-20 WB #### **DATE 17 FEB 2016** #### NOTES: - NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT - EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION - SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - TERMINAL NOMBERS ARE SHOWN FOR REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 BSC | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | | 0.252 | BSC | | M | 0° | 8° | 0° | 8° | #### **GENERIC RECOMMENDED MARKING DIAGRAM* SOLDERING FOOTPRINT*** | ∥ ALYW• | | | |---------|---------------------|----| | | 0 • | | | | <u> </u> | | | A | = Assembly Location | or | 8888888888 XXXX XXXX = Water Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking. | *For additional information on our Pb-Free strategy and soldering | |---| | details, please download the onsemi Soldering and Mounting | | Techniques Reference Manual, SOLDERRM/D. | | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. 16X 0.36 onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales