MC74HCT20A

Dual 4-Input NAND Gate with LSTTL-Compatible Inputs

High-Performance Silicon-Gate CMOS

The MC74HCT20A is identical in pinout to the LS20. The device inputs are compatible with standard CMOS LSTTL outputs.

6

Y1

PIN 7 = GND PIN 3, 11 = NO CONNECTION gure 1. Logic Di-

 $Y = \overline{ABCD}$

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 V to 5.5 V
- Low Input Current: 1 µA
- High Noise Immunity Characteristic of CMOS Devices
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

¹⁴ A A A A A A A

THEFT

HCT20AG

AWLYWW

HCT

20A

SOIC-14 **D SUFFIX**

14 AAAAAAAA

TSSOP-14 CASE 948G DT SUFFIX

= Assembly Location = Wafer Lot

= Year

WW, W = Work Week

WL I YY. Y

G or • = Pb-Free Package

CONTACT YOUR ON (Note: Microdot may be in either location)

PIN	ASSIGNMENT
	ACCIDINIENT

A1 [1•			V _{CC}
B1 [2	13	þ	D2
ис [3	12	þ	C2
C1 [4	11	þ	NC
D1 [5	10	þ	B2
Y1 [6	9	þ	A2
GND [7	8	þ	Y2

FUNCTION TABLE

	Output			
Α	В	С	D	Y
L	X	Х	Х	Н
Х	L	Х	X	Н
Х	X	L	X	Н
Х	X	Х	L	Н
н	н	н	н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit	
V _{CC}	DC Supply Voltage (Referenced	to GND)	-0.5 to +7.0	V	
V _{in}	DC Input Voltage (Referenced to	C Input Voltage (Referenced to GND)			
V _{out}	DC Output Voltage (Referenced	to GND)	–0.5 to V _{CC} +0.5	V	
l _{in}	DC Input Current, per Pin		±20	mA	
I _{out}	DC Output Current, per Pin		±25	mA	
I _{CC}	DC Supply Current, V_{CC} and GI	ND Pins	±50	mA	
P _D	Power Dissipation in Still Air	SOIC Package TSSOP Package	500 450	mW	
T _{stg}	Storage Temperature		-65 to +150	°C	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V	
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V	R
T _A	Operating Temperature Range, All Package Types	- 55	+ 125	°C)` 0
t _r , t _f	Input Rise/Fall Time (Figure 1)	0	500	ns	ns ^e

DC CHARACTERISTICS (Voltages Referenced to GND)

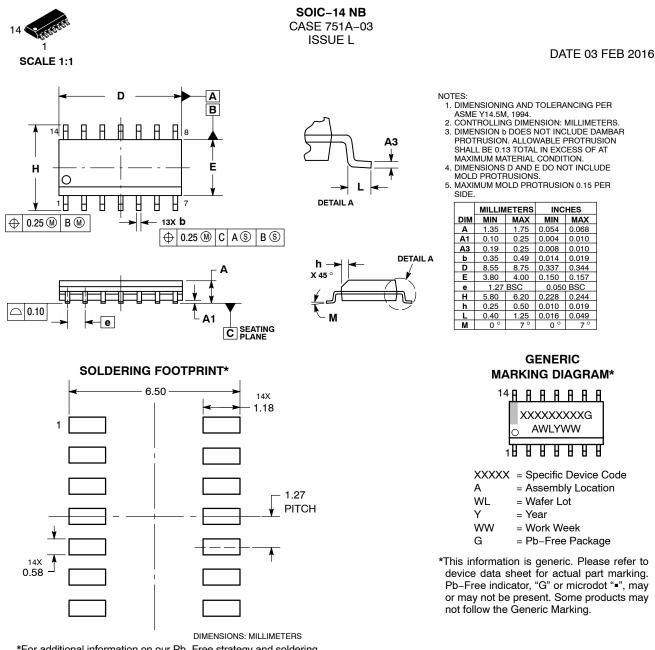
						10101	(o.g., oiiii		× (()
T _{stg}	Storage Temperature		–65 to	+150	°C	Unuse	d outputs	must be let	ft open.
ratings only Extended e reliability.	xceeding Maximum Ratings may dama y. Functional operation above the Record exposure to stresses above the Recomm MENDED OPERATING CONDITIO	nmended Opera lended Operating	ting Condi	tions is not	t implied.	RNEW		GN	
Symbol	Parameter		Min	Мах	Unit		Dr		
V _{CC}	DC Supply Voltage (Referenced to GN	ID)	4.5	5.5	V	IEV.			
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Refer	enced to GND)	0	V _{CC}	V	2 ^r			
T _A	Operating Temperature Range, All Pa	ckage Types	- 55	+ 125	°C	nsemi	4		
t _r , t _f	Input Rise/Fall Time (Figure 1)		0	500	ns	SEIT	Q		
	RACTERISTICS (Voltages Reference	ed to GND)	ME	ND		K.	nteed Lin	ait	
Symbol	Parameter	Co	ndition		V _{CC} V	–55 to 25°C	≤85°C	 ≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	V _{out} = 0.1V I _{out} ≤ 20µA	TR	FOR	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	V
V _{IL}	Maximum Low-Level Input Voltage	V _{out} = V _{CC} - 0 I _{out} ≤ 20µA):1V		4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	V _{in} = V _{IL} I _{out} ≤ 20μA			4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
	EV. Frat	$V_{in} = V_{IL}$	I _{out}	≤4.0mA	4.5	3.98	3.84	3.70	
V _{OL}	Maximum Low-Level Output Voltage	$\begin{array}{l} V_{in} = V_{IH} \\ I_{out} \leq 20 \mu A \end{array}$			4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
1		V _{in} = V _{IH}	I _{out}	≤4.0mA	4.5	0.26	0.33	0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or C	GND		5.5	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or C I _{out} = 0μA	ànd		5.5	1	10	40	μΑ
	•								
ΔI_{CC}	Additional Quiescent Supply Current	V _{in} = 2.4V, An V _{in} = V _{CC} or 0	y One Inpu	ut		≥ –55°C	25 to	125°C	

1. Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

2. Total Supply Current = $I_{CC} + \Sigma \Delta I_{CC}$.

MC74HCT20A

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns, V_{CC} = 5.0 V)


	Guaranteed Lin		mit		
Symbol	Parameter	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A, B, or C to Output Y (Figures 2 and 3)	28	35	42	ns
t _{TLH} , t _{THL}			19	22	ns
C _{in}	Maximum Input Capacitance	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD} Power Dissipation Capacitance (Per Gate)		26	pF
INPUT A, B, C, OR D (Vi) OUTPUT Y Vi = GND to 3.0 V Vm = 1.3 V Figure 2. Switching Waveforms A B C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D	- V _{CC} GND	TEST POINT UNDER TEST UNDER TEST UNDER TEST UNDER C_t* Figure 3. Test Circuit	•
Device	Package	Shipping [†]	

Device	Package	Shipping [†]
MC74HCT20ADG	SOIC-14 (Pb-Free)	55 Units/Rail
MC74HCT20ADR2G	SOIC-14 (Pb-Free)	2500/Tape & Reel
MC74HCT20ADTR2G	TSSOP-14*	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb-Free.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
BESCHIFTION. COIC-14 NB FAGE 2 OF	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>