Low-Voltage CMOS Quad 2-Input Multiplexer ### With 5 V-Tolerant Inputs (Inverting) #### **MC74LCX158** The MC74LCX158 is a high performance, quad 2-input inverting multiplexer operating from a 1.65 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX158 inputs to be safely driven from 5 V devices. Four bits of data from two sources can be selected using the Select and Enable inputs. The four outputs present the selected data in the inverted form. The MC74LCX158 can also be used as a function generator. Current drive capability is 24 mA at the outputs at 3 V. #### Features - Designed for 1.65 to 5.5 V V_{CC} Operation - 5 V Tolerant Inputs Interface Capability With 5 V TTL Logic - LVTTL Compatible - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability at 3 V - Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements - Latchup Performance Exceeds 100 mA - ESD Performance: - ♦ Human Body Model >2000 V - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **MARKING DIAGRAMS** A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. Figure 1. Pinout: 16-Lead Plastic Package (Top View) #### **PIN NAMES** | Pins | Function | |------|----------------------| | An | Source 0 Data Inputs | | Bn | Source 1 Data Inputs | | Ē | Enable Input | | S | Select Input | | Yn | Outputs | #### **TRUTH TABLE** | Inp | uts | Outputs | |------------------|--------|---------| | Output
Enable | Select | Y0-Y3 | | Н | Х | Н | | L | L | A0-A3 | | L | Н | B0-B3 | X = Don't CareA0-A3, B0-B3 = The levels of the respective Data-Word Inputs #### **PIN DESCRIPTIONS** #### **OUTPUTS** #### Y0-Y3 (Pins 4, 7, 9, 12) Data outputs. The selected input nibble is presented at these outputs when the Output Enable input is at a low level. The data present on these pins is in its inverted form for the LCX158. For the Output Enable input at a high level, the outputs are at a high level for the LCX158. #### Select (Pin 1) Nibble select. This input determines the data word to be transferred to the outputs. A low level on this input selects the A inputs and a high level selects the B inputs. #### **CONTROL INPUTS** #### Enable (Pin 15) Output Enable input. A low level on this input allows the selected data to be presented at the outputs. A high level on this input sets all of the outputs to a high level for the LCX158. #### INPUTS #### A0-A3 (Pins 2, 5, 11, 14) Nibble A inputs. The data present on these pins is transferred to the outputs when the Select input is at a low level and the Output Enable input is at a low level. The data is presented to the outputs in inverted form for the LCX158. #### B0-B3 (Pins 3, 6, 10, 13) Nibble B inputs. The data present on these pins is transferred to the outputs when the Select input is at a high level and the Output Enable input is at a low level. The data is presented to the outputs in inverted form for the LCX158. Figure 2. Expanded Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |--|--|---|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | VI | DC Input Voltage (Note 1) | | -0.5 to +6.5 | V | | Vo | | -Mode (High or Low State)
Tri-State Mode
er-Down Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IK} | DC Input Diode Current | V _I < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _O < GND | -50 | mA | | Io | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} or
I _{GND} | DC Supply Current per Supply Pin or Ground Pin | | ±100 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 secs | | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | θ_{JA} | Thermal Resistance (Note 1) | SOIC-16
TSSOP-16 | 126
159 | °C/W | | P_D | Power Dissipation in Still Air at 25 °C | SOIC-16
TSSOP-16 | 995
787 | mW | | MSL | Moisture Sensitivity | | Level 1 | - | | F _R | Flammability Rating Oxygen Index: 28 to 34 | | UL 94 V-0 @ 0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
N/A | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - I_O absolute maximum rating must be observed. Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. #### RECOMMENDED OPERATING CONDITIONS | Symbol | | Parameter | Min | Тур | Max | Unit | |---------------------------------|--------------------------------|---|------|-----|-----------------|------| | V_{CC} | Supply Voltage | Operating | 1.65 | 3.3 | 5.5 | V | | | | Data Retention Only | 1.5 | 3.3 | 5.5 | | | V _I | Digital Input Voltage | | 0 | - | 5.5 | V | | Vo | Output Voltage | Active Mode (High or Low State) | 0 | - | V _{CC} | V | | | | Tri-State Mode | 0 | - | 5.5 | | | | | Power Down Mode (V _{CC} = 0 V) | 0 | - | 5.5 | | | T _A | Operating Free-Air Temperature | | -40 | - | +125 | °C | | t _r , t _f | Input Rise or Fall Rate | V _{CC} = 1.65 V to 1.95 V | 0 | - | 20 | nS/V | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 0 | - | 20 | | | | | V_I from 0.8 V to 2.0 V, V_{CC} = 3.0 V | 0 | - | 10 | | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | 0 | _ | 5 | | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. #### DC ELECTRICAL CHARACTERISTICS | | | | | T _A = -40 °C | C to +85 °C | T _A = -40 °C | to +125 °C | | |--------------------------|---|--|---|--|--|--|--|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Max | Min | Max | Unit | | V _{IH} | HIGH Level Input Voltage | | 1.65 – 1.95 | 0.65 x
V _{CC} | - | 0.65 x
V _{CC} | - | V | | | | | 2.3 – 2.7 | 1.7 | - | 1.7 | - | | | | | | 3.0 – 3.6 | 2.0 | - | 2.0 | - | | | | | | 4.5 – 5.5 | 0.70 x
V _{CC} | - | 0.70 x
V _{CC} | - | | | V _{IL} | LOW Level Input Voltage | | 1.65 – 1.95 | - | 0.35 x
V _{CC} | - | 0.35 x
V _{CC} | V | | | | | 2.3 – 2.7 | - | 0.7 | - | 0.7 | | | | | | 3.0 – 3.6 | - | 0.8 | - | 0.8 | | | | | | 4.5 – 5.5 | - | 0.30 x
V _{CC} | - | 0.30 x
V _{CC} | | | V _{OH} | High-Level Output Voltage Low-Level Output Voltage | $\begin{split} V_I &= V_{IH} \text{ or } V_{IL} \\ I_{OH} &= -100 \mu\text{A} \\ I_{OH} &= -4 \text{ mA} \\ I_{OH} &= -8 \text{ mA} \\ I_{OH} &= -12 \text{ mA} \\ I_{OH} &= -16 \text{ mA} \\ I_{OH} &= -24 \text{ mA} \\ I_{OH} &= -32 \text{ mA} \\ \end{split}$ $V_I &= V_{IH} \text{ or } V_{IL} \\ I_{OL} &= 100 \mu\text{A} \\ I_{OL} &= 4 \text{ mA} \\ I_{OL} &= 8 \text{ mA} \\ I_{OL} &= 12 \text{ mA} \\ I_{OL} &= 16 \text{ mA} \\ I_{OL} &= 24 \text{ mA} \\ I_{OL} &= 24 \text{ mA} \\ \end{split}$ | 1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0 | V _{CC} - 0.1
1.29
1.8
2.2
2.4
2.2
3.7 |

0.1
0.24
0.3
0.4
0.4
0.55 | V _{CC} - 0.1
1.29
1.8
2.2
2.4
2.2
3.7 | -
-
-
-
-
-
0.1
0.24
0.3
0.4
0.4
0.55 | V | | l _l | Input Leakage Current | $I_{OL} = 32 \text{ mA}$
$V_{I} = 0 \text{ to } 5.5 \text{ V}$ | 4.5
3.6 | <u> </u> | 0.6
±5.0 | _ | 0.6
±5.0 | μΑ | | l _{OFF} | Power Off Leakage Current | $V_1 = 5.5 \text{ V or}$
$V_0 = 5.5 \text{ V}$ | 0 | - | 10 | _ | 10 | μΑ | | I _{CC} | Quiescent Supply Current | V _I = 5.5 V or GND | 3.6 | - | 10 | - | 10 | μΑ | | Δ I _{CC} | Increase in I _{CC} per Input | V _{IH} = V _{CC} - 0.6 V | 2.3 to 3.6 | - | 500 | - | 500 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **AC ELECTRICAL CHARACTERISTICS** | | | T _A = -40 °C to +85 ° | | C to +85 °C | T _A = -40 °C | to +125 °C | | | |-----------------------|--|---|---------------------|-------------|-------------------------|------------|------|------| | Symbol | Parameter | Test Condition | V _{CC} (V) | Min | Max | Min | Max | Unit | | t_{PLH} , t_{PHL} | Propagation Delay, | ropagation Delay, See Figures 3 and 4 or B to Y | 1.65 to 1.95 | - | 11.2 | - | 11.2 | ns | | | A or B to Y | | 2.3 to 2.7 | - | 8.5 | - | 8.5 | | | | | | 2.7 | - | 7.5 | - | 7.5 | | | | | | 3.0 to 3.6 | - | 6.5 | - | 6.5 | | | | | | 4.5 to 5.5 | - | 4.8 | - | 4.8 | | | t_{PLH} , t_{PHL} | Propagation Delay, | See Figures 3 and 4 | 1.65 to 1.95 | - | 11.6 | - | 11.6 | ns | | | S to Y | | 2.3 to 2.7 | - | 9.0 | - | 9.0 | | | | | | 2.7 | - | 8.0 | - | 8.0 | | | | | | 3.0 to 3.6 | - | 7.0 | - | 7.0 | | | | | | 4.5 to 5.5 | - | 5.8 | - | 5.8 | | | t_{PLH} , t_{PHL} | | Propagation Delay, See Figures 3 and 4 1. | 1.65 to 1.95 | - | 11.6 | - | 11.6 | ns | | | E to Y | | 2.3 to 2.7 | - | 9.0 | - | 9.0 | | | | | | 2.7 | - | 8.0 | - | 8.0 | | | | | | 3.0 to 3.6 | - | 7.0 | - | 7.0 | | | | | | 4.5 to 5.5 | - | 5.8 | - | 5.8 | | | toshL, | t _{OSHL} , Output to Output Skew (Note 5) | | 1.65 to 1.95 | - | - | - | - | ns | | ^T OSLH | | | 2.3 to 2.7 | - | - | - | - | | | | | | 2.7 | - | - | - | - | | | | | | 3.0 to 3.6 | - | 1.0 | - | 1.0 | | | | | | 4.5 to 5.5 | _ | _ | - | - | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product #### **DYNAMIC SWITCHING CHARACTERISTICS** | | | | T _A = +25 °C | | | | |------------------|-------------------------------------|---|-------------------------|-----|-----|-------| | Symbol | Characteristic | Condition | Min | Тур | Max | Units | | V _{OLP} | Dynamic LOW Peak Voltage (Note 6) | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | | 0.8 | | V | | V _{OLV} | Dynamic LOW Valley Voltage (Note 6) | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ | | 8.0 | | V | ^{6.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. #### **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Units | |------------------|-------------------------------|--|---------|-------| | C _{IN} | Input Capacitance | V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 7 | pF | | C _{OUT} | Output Capacitance | V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 8 | pF | | C _{PD} | Power Dissipation Capacitance | 10 MHz, V _{CC} = 3.3 V, V _I = 0 V or V _{CC} | 25 | pF | performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (toslh). | Test | Switch Position | |-------------------------------------|-----------------| | t _{PLH} / t _{PHL} | Open | | t _{PLZ} / t _{PZL} | V_{LOAD} | | t _{PHZ} / t _{PZH} | GND | C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 3. Test Circuit | V _{CC} , V | R_L,Ω | C _L , pF | V _{LOAD} | V _m , V | V _Y , V | |---------------------|--------------|---------------------|---------------------|--------------------|--------------------| | 1.65 to 1.95 | 500 | 30 | 2 x V _{CC} | V _{CC} /2 | 0.15 | | 2.3 to 2.7 | 500 | 30 | 2 x V _{CC} | V _{CC} /2 | 0.15 | | 2.7 | 500 | 50 | 6 V | 1.5 | 0.3 | | 3.0 to 3.6 | 500 | 50 | 6 V | 1.5 | 0.3 | | 4.5 to 5.5 | 500 | 50 | 2 x V _{CC} | V _{CC} /2 | 0.3 | Figure 4. Switching Waveforms #### **ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |-----------------|------------|-----------------------|-----------------------| | MC74LCX158DG | LCX158G | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC74LCX158DR2G | LCX158G | SOIC-16
(Pb-Free) | 2,500 Tape & Reel | | MC74LCX158DTG | LCX
158 | TSSOP-16
(Pb-Free) | 96 Units / Rail | | MC74LCX158DTR2G | LCX
158 | TSSOP-16
(Pb-Free) | 2,500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>. #### **REVISION HISTORY** | Revision | Description of Changes | Date | |----------|--|------------| | 8 | Rebranding to onsemi format. | 11/24/2024 | | 9 | Operation supply voltage range changed to 1.65 to 5.5 V V _{CC} , front page Features section updated, Marking Diagrams updated, Maximum Ratings table replaced, Recommended Operation Conditions table replaced, DC Electrical Characteristics table replaced, AC Characteristics table updated, Figures 3 and 4 updated, Ordering Information table updated, Revision History table added. | 6/30/2025 | This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates. #### SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M **DATE 18 OCT 2024** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. - 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES. - 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE. - 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION. | MILLIMETERS | | | | | | |--------------------------------|----------|------|------|--|--| | DIM | MIN | NOM | MAX | | | | А | 1.35 | 1.55 | 1.75 | | | | A1 | 0.10 | 0.18 | 0.25 | | | | A2 | 1.25 | 1.37 | 1.50 | | | | b | 0.35 | 0.42 | 0.49 | | | | С | 0.19 | 0.22 | 0.25 | | | | D | 9.90 BSC | | | | | | E | 6.00 BSC | | | | | | E1 | 3.90 BSC | | | | | | е | 1.27 BSC | | | | | | h | 0.25 | | 0.50 | | | | L | 0.40 | 0.83 | 1.25 | | | | L1 | 1.05 REF | | | | | | Θ | 0 2. | | | | | | TOLERANCE OF FORM AND POSITION | | | | | | | aaa | 0.10 | | | | | | bbb | 0.20 | | | | | | ccc | 0.10 | | | | | | ddd | 0.25 | | | | | | eee | 0.10 | | | | | #### RECOMMENDED MOUNTING FOOTPRINT *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------------|---|-------------|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.37 1.27P | | PAGE 1 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. #### **SOIC-16 9.90x3.90x1.37 1.27P** CASE 751B ISSUE M **DATE 18 OCT 2024** ## GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1: | | STYLE 2: | | STYLE 3: | S | TYLE 4: | | |--|--|---------------------------------|--|---------------------------------|--|---------|-------------------| | | COLLECTOR | PIN 1. | CATHODE | PIN 1. | COLLECTOR, DYE #1 | PIN 1. | COLLECTOR, DYE #1 | | | BASE | 2. | ANODE | 2. | BASE. #1 | 2. | | | 3. | EMITTER | 3. | NO CONNECTION | 3. | EMITTER. #1 | 3. | | | 4. | NO CONNECTION | 4. | CATHODE | 4. | COLLECTOR, #1 | 4. | COLLECTOR, #2 | | 5. | EMITTER | 5. | CATHODE | 5. | COLLECTOR, #2 | 5. | COLLECTOR, #3 | | 6. | BASE | 6. | NO CONNECTION | 6. | BASE, #2 | 6. | COLLECTOR, #3 | | 7. | COLLECTOR | 7. | ANODE | 7. | EMITTER, #2 | 7. | COLLECTOR, #4 | | 8. | COLLECTOR | 8. | CATHODE | 8. | COLLECTOR, #2 | 8. | COLLECTOR, #4 | | 9. | BASE | 9. | CATHODE | 9. | COLLECTOR, #3 | 9. | BASE, #4 | | 10. | EMITTER | 10. | ANODE | 10. | BASE, #3 | 10. | EMITTER, #4 | | 11. | NO CONNECTION | 11. | NO CONNECTION | 11. | EMITTER, #3 | 11. | | | | EMITTER | 12. | CATHODE | 12. | COLLECTOR, #3 | 12. | | | 13. | BASE | 13. | | 13. | COLLECTOR, #4 | 13. | BASE, #2 | | 14. | COLLECTOR | 14. | NO CONNECTION | 14. | BASE, #4 | 14. | | | 15. | EMITTER | 15. | ANODE | 15. | EMITTER, #4 | 15. | | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | | | | | | | | | | | STYLE 5: | | STYLE 6: | | STYLE 7: | | | | | PIN 1. | DRAIN, DYE #1 | PIN 1. | CATHODE | PIN 1. | SOURCE N-CH | | | | 2. | DRAIN, #1 | 2. | CATHODE | 2. | COMMON DRAIN (OUTPUT) | | | | 3. | DRAIN, #2 | 3. | CATHODE | 3. | COMMON DRAIN (OUTPUT) | | | | 4. | DRAIN, #2 | 4. | CATHODE | 4. | GATE P-CH | | | | 5. | DRAIN, #3 | 5. | | 5. | COMMON DRAIN (OUTPUT) | | | | 6. | DRAIN, #3 | 6. | | 6. | COMMON DRAIN (OUTPUT) | | | | 7. | DRAIN, #4 | | CATHODE | 7. | COMMON DRAIN (OUTPUT) | | | | 8. | DRAIN, #4 | | CATHODE | 8. | SOURCE P-CH | | | | a | | | | | | | | | ٥. | GATE, #4 | | ANODE | 9. | SOURCE P-CH | | | | 10. | SOURCE, #4 | 10. | ANODE | 10. | COMMON DRAIN (OUTPUT) | | | | 10.
11. | SOURCE, #4
GATE, #3 | 10.
11. | ANODE
ANODE | 10.
11. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | 10.
11.
12. | SOURCE, #4
GATE, #3
SOURCE, #3 | 10.
11.
12. | ANODE
ANODE
ANODE | 10.
11.
12. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | 10.
11.
12.
13. | SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2 | 10.
11.
12.
13. | ANODE
ANODE
ANODE
ANODE | 10.
11.
12.
13. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE N-CH | | | | 10.
11.
12.
13.
14. | SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2
SOURCE, #2 | 10.
11.
12.
13. | ANODE
ANODE
ANODE
ANODE
ANODE | 10.
11.
12.
13. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE N-CH
COMMON DRAIN (OUTPUT) | | | | 10.
11.
12.
13.
14.
15. | SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2
SOURCE, #2
GATE, #1 | 10.
11.
12.
13.
14. | ANODE
ANODE
ANODE
ANODE
ANODE
ANODE | 10.
11.
12.
13.
14. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GOMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | 10.
11.
12.
13.
14. | SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2
SOURCE, #2 | 10.
11.
12.
13. | ANODE
ANODE
ANODE
ANODE
ANODE | 10.
11.
12.
13. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE N-CH
COMMON DRAIN (OUTPUT) | | | | DOCUMENT NUMBER: | 98ASB42566B | B Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------------|--|-------------|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.37 1.27P | | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. **DATE 19 OCT 2006** ☐ 0.10 (0.004) SEATING PLANE D TSSOP-16 WB - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT - EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL - IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIMETERS | | INCHES | | | |-----|-------------|------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 BSC | | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 BSC | | 0.252 BSC | | | | М | 0 ° | 8° | 0° | 8 ° | | #### **RECOMMENDED** SOLDERING FOOTPRINT* ^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **GENERIC** MARKING DIAGRAM* XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L = Year W = Work Week G or • = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | TSSOP-16 | | PAGE 1 OF 1 | | **DETAIL E** onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales