Quad 2-Input NAND Schmitt Trigger

The MC74LVX132 is an advanced high speed CMOS Schmitt NAND trigger fabricated with silicon gate CMOS technology.

Pin configuration and function are the same as the MC74LVX00, but the inputs have hysteresis.

The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0~V, allowing the interface of 5.0~V systems to 3.0~V systems.

Features

- High Speed: $t_{PD} = 5.8 \text{ ns}$ (Typ) at $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25$ °C
- Power Down Protection Provided on Inputs
- Low Noise: $V_{OLP} = 0.5 \text{ V (Max)}$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: Human Body Model > 2000 V;

Machine Model > 200 V

• These Devices are Pb-Free and are RoHS Compliant

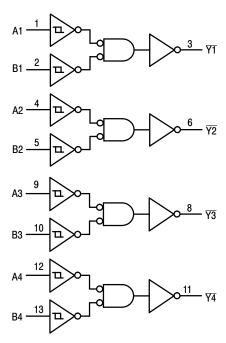
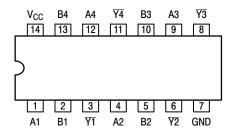


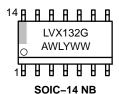
Figure 1. Logic Diagram

FUNCTION TABLE

A Input	B Input	▼ Output
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

ON Semiconductor®


http://onsemi.com


SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

14-Lead (Top View)

MARKING DIAGRAMS

TSSOP-14

LVX132 = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC74LVX132

MAXIMUM RATINGS

Symbol	Pa	arameter	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current	V _I < GND	-20	mA
I _{OK}	DC Output Diode Current	V _O < GND	±20	mA
l _{OUT}	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for	10 Seconds	260	°C
TJ	Junction Temperature under Bias		+ 150	°C
θ_{JA}	Thermal Resistance	SOIC TSSOP	250	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	250	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94-V0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 2000 > 200 N/A	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 4)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Tested to EIA/JESD22-A114-A.
- Tested to EIA/JESD22-A115-A.
 Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	2.0	3.6	V
VI	Input Voltage (Note 5)	0	5.5	V
Vo	Output Voltage (HIGH or LOW State)	0	5.5	V
T _A	Operating Free–Air Temperature	-40	+ 125	°C
Δt/ΔV	Input Transition Rise or Fall Rate $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0	100	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

MC74LVX132

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	٦	Γ _A = 25°0	;	T _A = ≤	≤ 85°C	T _A = ≤	125°C	
Symbol	Parameter	Test Conditions	v	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage (Figure 4)		2.0 3.0 3.6	1.15 1.50 1.70	1.31 1.82 2.12	1.60 2.25 2.60	1.15 1.50 1.70	1.60 2.25 2.60	1.15 1.50 1.70	1.60 2.25 2.60	V
V _{T-}	Negative Threshold Voltage (Figure 4)		2.0 3.0 3.6	0.30 0.75 1.00	0.64 1.13 1.46	0.9 1.45 1.90	0.30 0.75 1.00	0.90 1.45 1.90	0.30 0.75 1.00	0.90 1.45 1.90	V
V _H	Hysteresis Voltage (Figure 4)		2.0 3.0 3.6	0.30 0.30 0.35	0.70 0.76 0.69	1.30 1.50 1.60	0.30 0.30 0.35	1.30 1.50 1.60	0.30 0.30 0.35	1.30 1.50 1.60	V
V _{OH}	Minimum High-Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50 \mu A$ $I_{OH} = -50 \mu A$ $I_{OH} = -4 mA$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0		1.9 2.9 2.48		1.9 2.9 2.34		V
V _{OL}	Maximum Low–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \mu A$ $I_{OL} = 50 \mu A$ $I_{OL} = 4 mA$	2.0 3.0 3.0		0.0 0.0	0.1 0.1 0.36		0.1 0.1 0.44		0.1 0.1 0.52	V
I _{in}	Maximum Input Leakage Current	V _{in} = 5.5 V or GND	3.6			±0.1		±1.0		±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{in} = V_{CC}$ or GND	3.6			2.0		20		20	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns)

					Γ _A = 25°(;	T _A = ≤	85°C	T _A = ≤	125°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay,	V _{CC} = 2.7V	$C_L = 15pF$ $C_L = 50pF$		7.0 10.0	11.0 16.0	1.0 1.0	13.0 18.7	1.0 1.0	15.0 20.0	ns
	A or B to \overline{Y}	$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$		5.8 8.3	10.6 15.4	1.0 1.0	12.5 17.5	1.0 1.0	14.5 19.5	
t _{OSHL} ,	Output to Output Skew	V _{CC} = 2.7V	C _L = 50pF			1.5		1.5		1.5	ns
toslh	(Note 6)	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 50pF			1.5		1.5		1.5	
C _{in}	Maximum Input Capacitance				4	10		10		10	pF
					Ty	pical @	25°C, V	_{CC} = 5.0	٧		
C _{PD}	Power Dissipation Capacit	tance (Note 6)					11				pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/4 (per gate). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_f = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.3	-0.5	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V

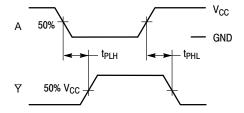
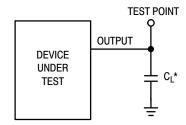



Figure 2. Switching Waveforms

*Includes all probe and jig capacitance

Figure 3. Test Circuit

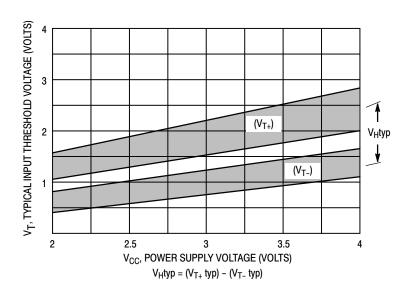
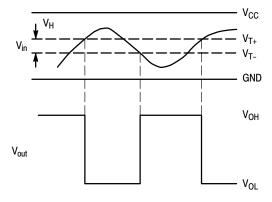
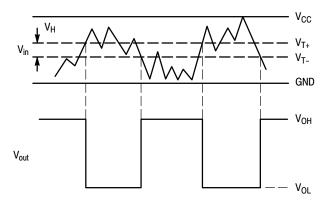




Figure 4. Typical Input Threshold, V_{T+} , V_{T-} versus Power Supply Voltage

MC74LVX132

(a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times

(b) A Schmitt-Trigger Offers Maximum Noise Immunity

Figure 5. Typical Schmitt-Trigger Applications

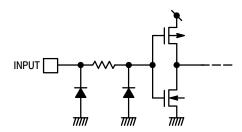
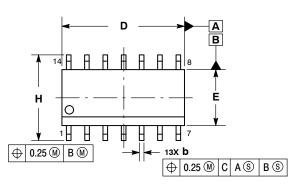
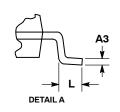


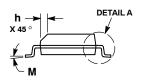
Figure 6. Input Equivalent Circuit

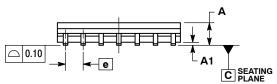
ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX132DR2G	SOIC-14 NB (Pb-Free)	2500 Tape & Reel
MC74LVX132DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LVX132DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.






SOIC-14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016

GENERIC MARKING DIAGRAM*

MIN MAX

0.050 BSC

0.068

0.019

0.054

0.25 0.004 0.010

0.25 0.008 0.010

0.50 0.010 0.019

1.25 0.016 0.049

0.49 0.014

8.55 8.75 0.337 0.344 3.80 4.00 0.150 0.157

NOTES:
1. DIMENSIONING AND TOLERANCING PER

5. MAXIMUM MOLD PROTRUSION 0.15 PER

MILLIMETERS MIN MAX

1.27 BSC

0.19

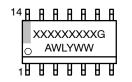
0.25

0.40

SIDE

Α

A1 0.10


АЗ

b 0.35

D 8.55 E 3.80

e H h

ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.

XXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
 Y = Year
 WW = Work Week
 G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales