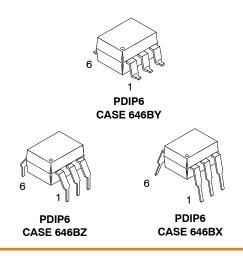
onsemi

6-Pin DIP High Voltage Phototransistor Optocouplers

4N38M, H11D1M, H11D3M, MOC8204M

Description


The 4N38M, H11D1M, H11D3M and MOC8204M are phototransistor-type optically coupled optoisolators. A gallium arsenide infrared emitting diode is coupled with a high voltage NPN silicon phototransistor. The device is supplied in a standard plastic six-pin dual-in-line package.

Features

- High Voltage:
 - MOC8204M, BV_{CEO} = 400 V
 - ◆ H11D1M, BV_{CEO} = 300 V
 - ◆ H11D3M, BV_{CEO} = 200 V
- Safety and Regulatory Approvals:
 - ◆ UL1577, 4,170 VAC_{RMS} for 1 Minute
- DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

- Power Supply Regulators
- Digital Logic Inputs
- Microprocessor Inputs
- Appliance Sensor Systems
- Industrial Controls

MARKING DIAGRAM

- ON = Company Logo
- H11D1 = Specific Device Code
- V = DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
- X = One–Digit Year Code
- YY = Digit Work Week
- Q = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 410 of this data sheet.

1

SCHEMATICS

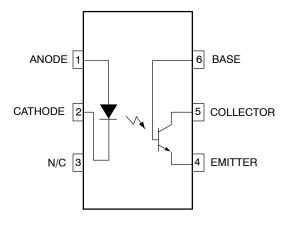


Figure 1. Schematics

SAFETY AND INSULATION RATINGS

Parameter		
Installation Classifications per DIN VDE	< 150 V _{RMS}	I – IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I – IV
Climatic Classification	_	55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V _{PR}	Input–to–Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V _{peak}
	Input–to–Output Test Voltage, Method B, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with t_m = 1 s, Partial Discharge < 5 pC	1594	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}
VIOTM	Highest Allowable Over-Voltage	6000	V _{peak}
	External Creepage	≥7	mm
	External Clearance	≥7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
Τs	Case Temperature (Note 1)	175	°C
I _{S,INPUT}	Input Current (Note 1)	350	mA
P _{S,OUTPUT}	Output Power (Note 1)	800	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V (Note 1)	> 10 ⁹	Ω

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIUM RATINGS

Symbol	Parameter	Device	Value	Unit
TOTAL DEV	/ICE			•
T _{STG}	Storage Temperature	All	-40 to + 125	°C
T _{OPR}	Operating Temperature	All	-40 to + 100	°C
ТJ	Junction Temperature	All	-40 to + 125	°C
T _{SOL}	Lead Solder Temperature	All	260 for 10 seconds	°C
PD	Total Device Power Dissipation @ $T_A = 25^{\circ}C$	All	420	mW
	Derate Above 25°C		3.5	mW/°C
EMITTER	·			
١ _F	Forward DC Current (Note 2)	All	80	mA
V _R	Reverse Input Voltage (Note 2)	All	6.0	V
l _F (pk)	Forward Current – Peak (1 µs pulse, 300 pps) (Note 2)	All	3.0	А
PD	LED Power Dissipation @ $T_A = 25^{\circ}C$ (Note 2)	All	120	mW
	Derate Above 25°C		1.41	mW/°C
DETECTOR				•
PD	Power Dissipation @ TA = 25°C	All	300	mW
	Derate Linearly Above 25°C		4.0	mW/°C
V _{CEO}	Collector to Emitter Voltage (Note 2)	MOC8204M	400	V
		H11D1M	300	V
		H11D3M	200	V
		4N38M	80	V
V _{CBO}	Collector Base Voltage (Note 2)	MOC8204M	400	V
		H11D1M	300	V
		H11D3M	200	V
		4N38M	80	V
V _{ECO}	Emitter to Collector Voltage (Note 2)	H11D1M, H11D3M, MOC8204M	7	V
Ι _C	Collector Current (Continuous)	All	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. Parameters meet or exceed JEDEC registered data (for 4N38M only).

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol Characteristic Test Conditions Device Min Typ Max Onit	Symbol	Characteristic	Test Conditions	Device	Min	Тур	Max	Unit
---	--------	----------------	-----------------	--------	-----	-----	-----	------

INDIVIDUAL COMONENT CHARACTERISTICS

Emitter

V _F	Forward Voltage (Note 3)	I _F = 10 mA	All	-	1.15	1.50	V
$\frac{\Delta V_{F}}{\Delta T_{A}}$	Forward Voltage Temperature Coefficient		All	-	-1.8	-	mV/°C
BV _R	Reverse Breakdown Voltage	I _R = 10 μA	All	6	25	-	V
CJ	Junction Capacitance	$V_{F} = 0 V$, f = 1 MHz	All	-	50	-	pF
		V _F = 1 V, f = 1 MHz		-	65	-	pF
I _R	Reverse Leakage Current (Note 3)	V _R = 6 V	All	-	0.05	10	μA

Detector

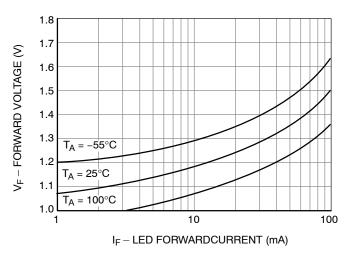
BV _{CEO}	Breakdown Voltage	$R_{BE} = 1 M\Omega,$	MOC8204M	400	-	-	V
	Collector-to-Emitter (Note 3)	I _C = 1.0 mA, I _F = 0	H11D1M	300	-	-	V
			H11D3M	200	-	-	V
		No RBE, I _C = 1.0 mA	4N38M	80	-	_	V
BV _{CBO}	Collector to Base (Note 3)	$I_{C} = 100 \ \mu A, I_{F} = 0$	MOC8204M	400	-	-	V
			H11D1M	300	-	-	V
			H11D3M	200	-	-	V
			4N38M	80	-	-	V
BV _{EBO}	Emitter to Base	I _E = 100 μA, I _F = 0	4N38M	7	-	-	V
BV _{ECO}	Emitter to Collector	I _E = 100 μA, I _F = 0	All	7	10	-	V
I _{CEO}	Leakage Current Collector to	$V_{CE} = 300 \text{ V}, \text{ I}_{F} = 0, \text{ T}_{A} = 25^{\circ}\text{C}$	MOC8204M	-	-	100	nA
	Emitter (Note 3) ($R_{BE} = 1 M\Omega$)	$V_{CE} = 300 \text{ V}, \text{ I}_{F} = 0, \text{ T}_{A} = 100^{\circ}\text{C}$		-	-	250	μΑ
		$V_{CE} = 200 \text{ V}, \text{ I}_{F} = 0, \text{ T}_{A} = 25^{\circ}\text{C}$	H11D1M	-	-	100	nA
		$V_{CE} = 200 \text{ V}, \text{ I}_{F} = 0, \text{ T}_{A} = 100^{\circ}\text{C}$		-	-	250	μΑ
		$V_{CE} = 100 \text{ V}, \text{ I}_{F} = 0, \text{ T}_{A} = 25^{\circ}\text{C}$	H11D3M	_	_	100	nA
		$V_{CE} = 100 \text{ V}, \text{ I}_{F} = 0, \text{ T}_{A} = 100^{\circ}\text{C}$		-	-	250	μΑ
		No R _{BE} , V_{CE} = 60 V, I_{F} = 0, T_{A} = 25°C	4N38M	-	-	50	nA

TRANSFER CHARACTERISTICS

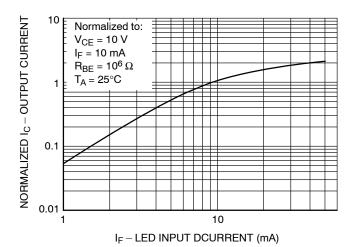
Emitter

CTR	Current Transfer Ratio, Collector-to-Emitter	$I_{F} = 10 \text{ mA}, V_{CE} = 10 \text{ V}, \\ R_{BE} = 1 \text{ M}\Omega$	H11D1M, H11D3M, MOC8204M	2 (20)	-	-	mA (%)
		I _F = 10 mA, V _{CE} = 10 V	4N38M	2 (20)	-	-	mA (%)
V _{CE(SAT)}	Saturation Voltage (Note 3)	I_F = 10 mA, I_C = 0.5 mA, R_{BE} = 1 $M\Omega$	H11D1M, H11D3M, MOC8204M	-	0.1	0.4	V
		I _F = 20 mA, I _C = 4 mA	4N38M	-	-	1.0	V

Switching Times


t _{ON}	Non-Saturated Turn-on Time	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 2 \text{ mA},$	All	-	5	-	μs
t _{OFF}	Turn-off Time	R _L = 100 Ω	All	-	5	-	μs

ISOLATION CHARACTERISTICS


V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	4170	-	-	VAC _{RMS}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 V, f = 1 MHz	-	0.2	-	pF
R _{ISO}	Isolation Resistance	$V_{I-O} = \pm 500 V_{DC}, T_A = 25^{\circ}C$	10 ¹¹	-	-	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Parameters meet or exceed JEDEC registered data (for 4N38M only).

TYPICAL PERFORMANCE CURVES

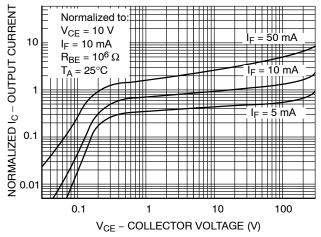
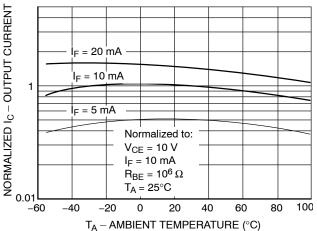
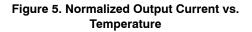
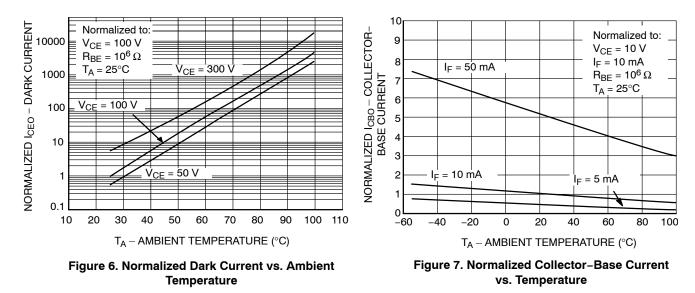





Figure 3. Normalized Output Characteristics

REFLOW PROFILE

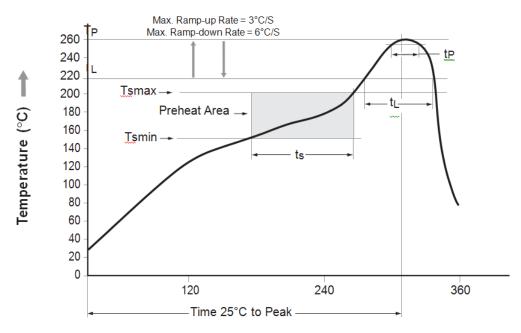
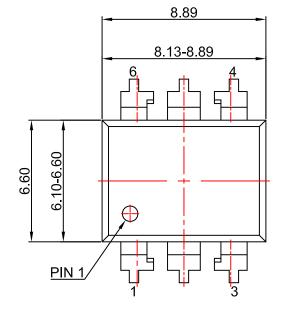


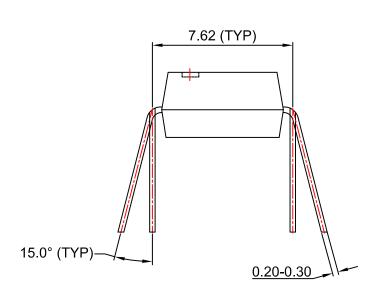
Figure 8. Reflow Profile

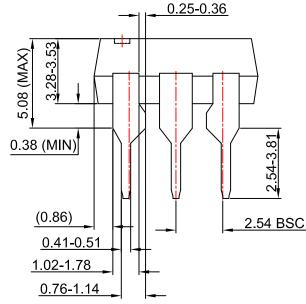
Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60 – 120 seconds
Ramp-up Rate (t to t _P)	3°C / second max.
Liquidous Temperature (T _L)	217°C
Time (t_L) Maintained Above (T_L)	60 – 150 seconds
Peak Body Package Temperature	260°C + 0°C / −5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C / second max.
Time 25°C to Peak Temperature	8 minutes max.

Table 1. ORDERING INFORMATION

Part Number	Package	Packing Method†
H11D1M	DIP 6-Pin	Tube (50 Units)
H11D1SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
H11D1SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
H11D1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11D1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11D1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
H11D1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


4. The product orderable part number system listed in this table also applies to the 4N38M, H11D3M, and MOC8204M devices.

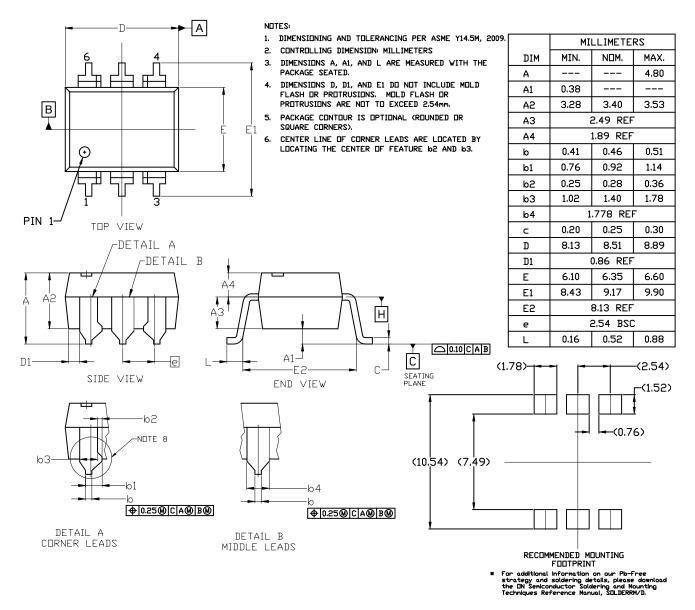


PDIP6 8.51x6.35, 2.54P CASE 646BX ISSUE O

DATE 31 JUL 2016

NOTES:

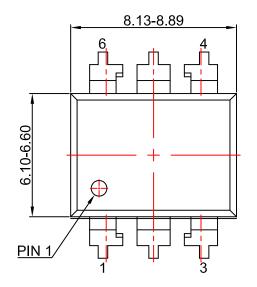
- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

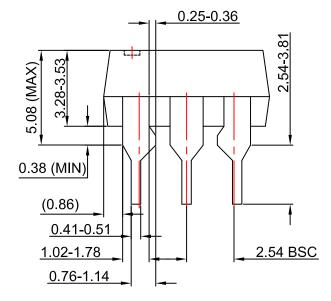

DOCUMENT NUMBER:	98AON13449G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1			

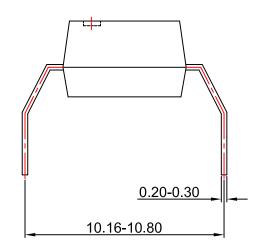
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

PDIP6 8.51x6.35, 2.54P CASE 646BY ISSUE A

DATE 15 JUL 2019




DOCUMENT NUMBER:	98AON13450G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51x6.35, 2.54P		PAGE 1 OF 1	
onsemi and ONSEM) are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.				



PDIP6 8.51x6.35, 2.54P CASE 646BZ ISSUE O

DATE 31 JUL 2016

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13451G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **Onsemi** does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>