

Switch-mode Soft Recovery Power Rectifier MSR1560G, MSRF1560G

These state-of-the-art devices are designed for boost converter or hard-switched converter applications, especially for Power Factor Correction application. It could also be used as a free wheeling diode in variable speed motor control applications and switching mode power supplies.

Features

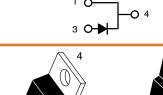
- Soft Recovery with Low Reverse Recovery Charge (Q_{RR}) and Peak Reverse Recovery Current (I_{RRM})
- Epoxy meets UL 94 V-0 @ 0.125 in
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- These are Pb-Free Devices

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (At Rated V _R , T _C = 125°C)	I _O	15	Α
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz,T _C = 125°C)	I _{FRM}	30	Α
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	100	Α
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

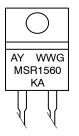

THERMAL CHARACTERISTICS

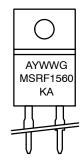
Parameter	Symbol	Value	Unit
MSR1560G: Thermal Resistance Junction-to-Case Junction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	1.6 72.8	°C/W
MSRF1560G: Thermal Resistance Junction-to-Case Junction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	4.25 75	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

SOFT RECOVERY POWER RECTIFIER 15 AMPERES, 600 VOLTS





TO-220 FULLPAK CASE 221AG STYLE 1

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package
KA = Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping [†]
MSR1560G	TO-220AC (Pb-Free)	50 Units / Rail

DISCONTINUED (Note 1)

MSRF1560G	TO-220FP (Pb-Free)	50 Units / Rail
-----------	-----------------------	-----------------

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
- DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Va	lue	Unit
Instantaneous Forward Voltage (Note 1) (I _F = 15 A)	V _F	T _J = 25°C	T _J = 150°C	V
Maximum Typical		1.8 1.5	1.4 1.2	
Instantaneous Reverse Current (V _R = 600 V)	I _R	T _J = 25°C	T _J = 150°C	μΑ
Maximum Typical		15 0.4	5000 100	
Reverse Recovery Time (Note 2) (V _R = 30 V, I _F = 1 A, di/dt = 100 A/μs)	t _{rr}	T _J = 25°C	T _J = 100°C	ns
Maximum Typical		45 35	65 54	
Typical Recovery Softness Factor ($V_R = 30 \text{ V}, I_F = 1 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$)	s = t _b /t _a	0.67	0.74	
Typical Peak Reverse Recovery Current (V _R = 30 V, I _F = 1 A, di/dt = 100 A/μs)	I _{RRM}	2.3	3.2	Α
Typical Reverse Recovery Charge (V _R = 30 V, I _F = 1 A, di/dt = 100 A/μs)	Q _{RR}	31	78	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%

- 2. T_{RR} measured projecting from 25% of I_{RRM} to zero current

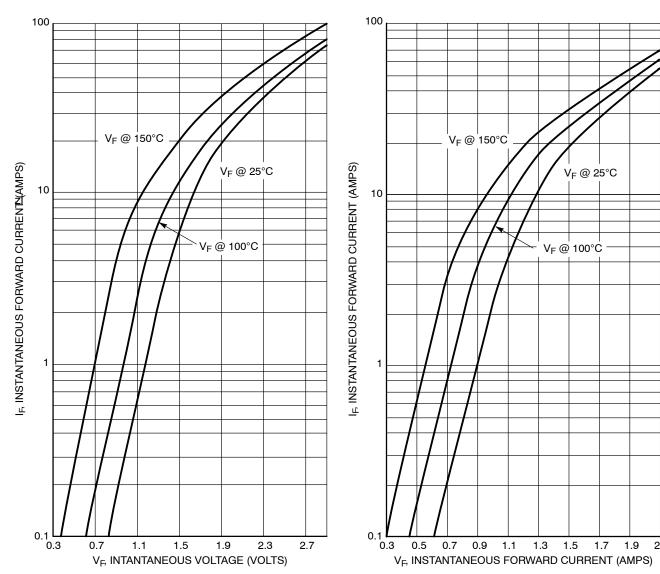


Figure 1. Maximum Forward Voltage

Figure 2. Typical Forward Voltage

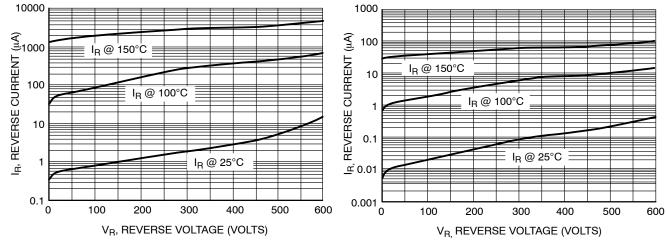


Figure 3. Maximum Reverse Current

Figure 4. Typical Reverse Current

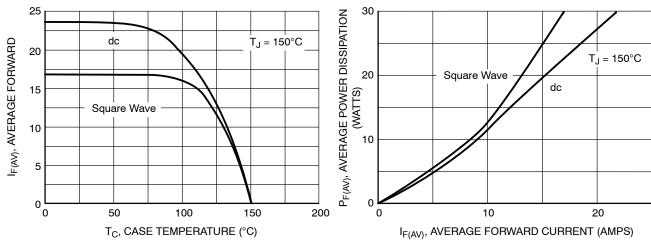


Figure 5. Current Derating

Figure 6. Power Dissipation

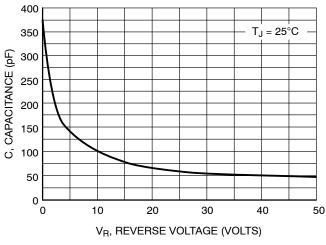


Figure 7. Maximum Capacitance

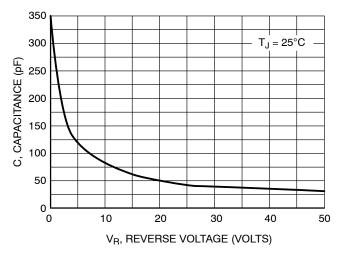


Figure 8. Typical Capacitance

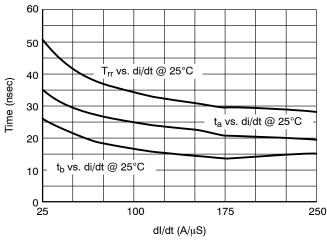


Figure 9. Typical Trr vs. di/dt

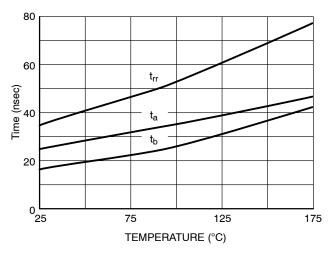


Figure 10. Typical Trr vs. Temperature

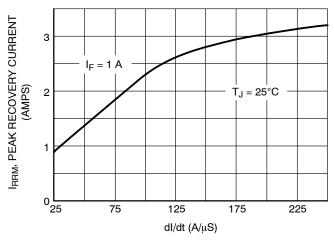


Figure 11. Typical Peak Reverse Recovery Current

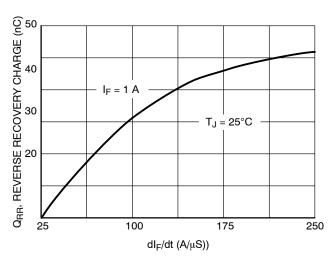


Figure 12. Typical Reverse Recovery Charge

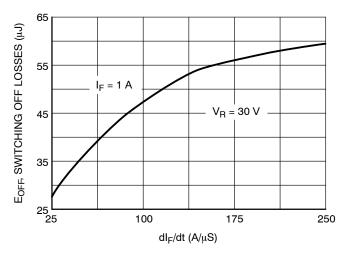


Figure 13. Typical Switching Off Losses

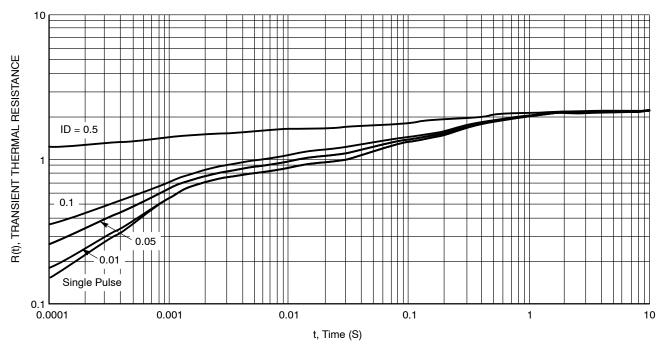


Figure 14. Transient Thermal Response

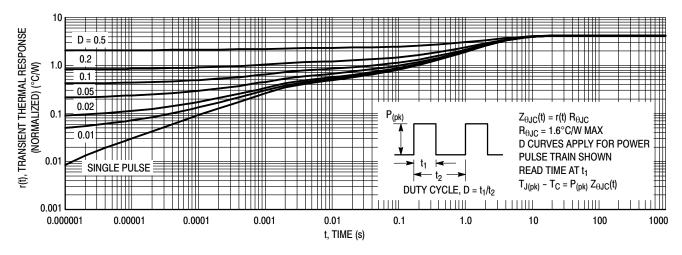


Figure 15. Thermal Response, (MSRF1560) Junction-to-Case ($R_{\theta JC}$)

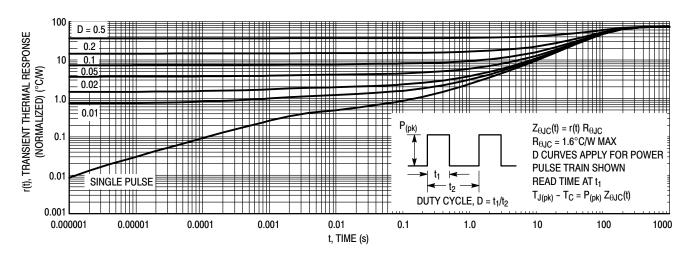
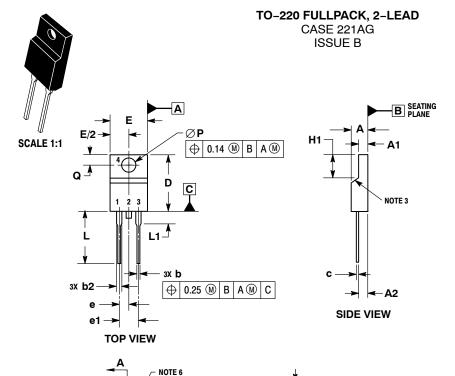


Figure 16. Thermal Response, (MSRF1560) Junction–to–Ambient ($R_{\theta JA}$)

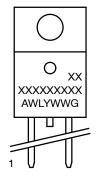
DATE 27 AUG 2015



D

∮ D

ALTERNATE CONSTRUCTION


SECTION D-D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. CONTOUR UNCONTROLLED IN THIS AREA.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.
- 5. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.

OTHER TOT EXCEED 2.0				
MILLIMETERS				
MIN MAX				
4.30	4.70			
2.50	2.90			
2.50	2.90			
0.54	0.84			
1.10	1.40			
0.49	0.79			
14.22	15.88			
9.65	10.67			
2.54 BSC				
5.08	BSC			
6.40	6.90			
12.70	14.73			
	2.80			
3.00	3.40			
2.80	3.20			
	MIN 4.30 2.50 2.50 0.54 1.10 0.49 14.22 9.65 2.54 5.08 6.40 12.70 3.00			

GENERIC MARKING DIAGRAM*

= Assembly Location

WL = Wafer Lot

= Year

WW = Work Week

G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON52563E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220 FULLPACK, 2-LEAD		PAGE 1 OF 1

SECTION A-A

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-220, 2-LEAD CASE 221B-04 ISSUE F

DATE 12 APR 2013

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.620	15.11	15.75
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.82
D	0.025	0.039	0.64	1.00
F	0.142	0.161	3.61	4.09
G	0.190	0.210	4.83	5.33
Н	0.110	0.130	2.79	3.30
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
T	0.235	0.255	5.97	6.48
U	0.000	0.050	0.000	1.27

STYLE 1: PIN 1. CATHODE 2. N/A 3. ANODE

STYLE 2: PIN 1. ANODE 2. N/A 3. CATHODE 4. ANODE

DOCUMENT NUMBER:	98ASB42149B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220, 2-LEAD		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales