ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
6-Channel Differential 1:2 Switch for PCle 3.0 and DisplayPort 1.2

The NCN3612B is a 6-Channel differential SPDT switch designed to route PCI Express Gen3 and/or DisplayPort 1.2 signals. Due to the ultra-low ON-state capacitance (2.1 pF typ) and resistance (8 Ω typ), this switch is ideal for switching high frequency signals up to a signal bit rate (BR) of 8 Gbps . This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space-saving 5x11x0.75 mm WQFN56 package. The NCN3612B uses 80% less quiescent power than other comparable PCIe switches.

Features

- BTX Pinout
- $V_{\text {DD }}$ Power Supply from 3 V to 3.6 V
- Low Supply Current: $250 \mu \mathrm{~A}$ typ
- 6 Differential Channels, 2:1 MUX/DEMUX
- Compatible with Display Port 1.2 \& PCIe 3.0
- Data Rate: Supports 8 Gbps
- Low R_{ON} Resistance: 8Ω typ
- Low CON Capacitance: 2.1 pF
- Space Saving, Small WQFN-56 Package
- This is a Pb-Free Device

Typical Applications

- Notebook Computers
- Desktop Computers
- Server/Storage Networks

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G $\quad=$ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping †
NCN3612BMTTWG	WQFN56 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Application Schematic

Figure 2. NCN3612B Block Diagram

TRUTH TABLE (SEL Control)

Function	SEL
PCI Express Gen3 Path is Active (Tx, Rx)	L
Digital Video Port is Active (D, HPD, AUX)	H

TRUTH TABLE (Latch Control)

LE	Internal Mux Select
L	Respond to Changes on SEL
H	Latched

Figure 3. Pinout
(Top View)

PIN FUNCTION AND DESCRIPTION

Pin	Name	Description
$\begin{gathered} 6,17,22,27, \\ 34,50,55 \end{gathered}$	VDD	DC Supply, 3.3V $\pm 10 \%$
$\begin{gathered} 1,11,16,20,21, \\ 28,29,35,48, \\ 49,56 \end{gathered}$	GND	Power Ground.
Exposed Pad	-	The exposed pad on the backside of package is internally connected to Gnd. Externally the exposed pad should also be user-connected to GND.
2	SEL	SEL controls the mux through a flow-through latch. Do not float this pin. SEL = 0 for PCIE Mode; SEL = 1 for DP Mode
3	LE	LE controls the latch gate. Do not float this pin.
4	IN_0+	Differential input from GMCH PCIE outputs. IN_0+ makes a differential pair with IN_0-.
5	IN_0-	Differential input from GMCH PCIE outputs. IN_0- makes a differential pair with IN_0+.
7	IN_1+	Differential input from GMCH PCIE outputs. IN_1+ makes a differential pair with IN_1-.
8	IN_1-	Differential input from GMCH PCIE outputs. IN_1- makes a differential pair with IN_1+.
9	IN_2+	Differential input from GMCH PCIE outputs. IN_2+ makes a differential pair with IN_2-.
10	IN_2-	Differential input from GMCH PCIE outputs. IN_2- makes a differential pair with IN_2+.
12	IN_3+	Differential input from GMCH PCIE outputs. IN_3+ makes a differential pair with IN_3-.
13	IN_3-	Differential input from GMCH PCIE outputs. IN_3- makes a differential pair with IN_3+.
14	OUT+	Pass-through output from AUX+ input when SEL = 1. Pass-through output from Rx0+ input when SEL $=0$.
15	OUT-	Pass-through output from AUX- input when SEL = 1. Pass-through output from Rx0-input when SEL $=0$.
18	X+	$\mathrm{X}+$ is an analog pass-through output corresponding to Rx1+.
19	X-	X - is an analog pass-through output corresponding to the Rx1-input. The path from Rx 1 - to X - must be matched with the path from $\mathrm{Rx} 1+$ to $\mathrm{X}+$. $\mathrm{X}+$ and X - form a differential pair when the pass-through mux mode is selected.
23	Rx1-	Differential input from PCIE connector or device. $\mathrm{R} \times 1$ - makes a differential pair with $\mathrm{R} \times 1+$. $\mathrm{R} \times 1$ - is passed through to the $\mathrm{X}-\mathrm{pin}$ on the path that matches the $\mathrm{R} \times 1+$ to $\mathrm{X}+\mathrm{pin}$.
24	Rx1+	Differential input from PCIE connector or device. Rx1+ makes a differential pair with $\mathrm{Rx} 1-$. $\mathrm{R} \times 1+$ is passed through to the $\mathrm{X}+$ pin when $\mathrm{SEL}=0$.
25	Rx0-	Differential input from PCIE connector or device. R×0-makes a differential pair with $\mathrm{RxO}+\mathrm{R} \times 0-\mathrm{is}$ passed through to the OUT- pin when SEL $=0$.
26	Rx0+	Differential input from PCIE connector or device. $\mathrm{R} \times 0+$ makes a differential pair with $\mathrm{R} \times 0-\mathrm{R} \times 0+$ is passed through to the OUT + pin when SEL $=0$.
30	HPD2	Negative low frequency HPD input handshake protocol signal (normally not connected).
31	HPD1	Positive low frequency HPD input handshake protocol signal.
32	AUX-	Differential input from HDMI/DP connector. AUX- makes a differential pair with $A U X+$. AUX- is passed through to the OUT- pin when SEL $=1$.
33	AUX+	Differential input from HDMI/DP connector. AUX+ makes a differential pair with AUX-. AUX+ is passed through to the OUT + pin when $S E L=1$.
37, 36	Tx3+, Tx3-	Analog pass-through output\#2 corresponding to IN_3+ and IN_3- when SEL = 0 .
39, 38	Tx2+, Tx2-	Analog pass-through output\#2 corresponding to IN_2+ and IN_2-when SEL = 0.
41, 40	Tx1+, Tx1-	Analog pass-through output\#2 corresponding to IN_1+ and IN_1- when SEL = 0.
43, 42	Tx0+, Tx0-	Analog pass-through output\#2 corresponding to IN_0+ and IN_0-when SEL = 0.
45, 44	D3+, D3-	Analog pass-through output\#1 corresponding to IN_3+ and IN_3-, when SEL = 1 .
47, 46	D2+, D2-	Analog pass-through output\#1 corresponding to IN_2+ and IN_2-, when SEL = 1 .
52, 51	D1+, D1-	Analog pass-through output\#1 corresponding to IN_1+ and IN_1-, when SEL = 1 .
54, 53	D0+, D0-	Analog pass-through output\#1 corresponding to IN_0+ and IN_0-, when SEL = 1 .

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltage	$V_{\text {DD }}$	-0.5 to 5.3	$V_{D C}$
Input/Output Voltage Range of the Switch (Tx, Rx, D, HPD, AUX, IN_, OUT, X)	$\mathrm{V}_{\text {IS }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V_{DC}
Selection Pin Voltages (SEL and LE)	$\mathrm{V}_{\text {IN }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.3$	$V_{D C}$
Continuous Current Through One Switch Channel	Is	± 120	mA
Maximum Junction Temperature (Note 1)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Air (Note 2)	$\mathrm{R}_{\text {өJA }}$	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Latch-up Current (Note 3)	ILU	± 100	mA
Human Body Model (HBM) ESD Rating (Note 4)	ESD HBM	7000	V
Machine Model (MM) ESD Rating (Note 4)	ESD MM	400	V
Moisture Sensitivity (Note 5)	MSL	Level 1	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{J}\right)$ is not exceeded.
2. This parameter is based on EIA/JEDEC 51-7 with a 4-layer PCB, $80 \mathrm{~mm} \times 80 \mathrm{~mm}$, two $10 z$ Cu material internal planes and top planes of 2oz Cu material.
3. Latch up Current Maximum Rating: $\pm 100 \mathrm{~mA}$ per JEDEC standard: JESD78.
4. This device series contains ESD protection and passes the following tests:

Human Body Model (HBM) $\pm 7.0 \mathrm{kV}$ per JEDEC standard: JESD22-A114 for all pins.
Machine Model (MM) ± 400 V per JEDEC standard: JESD22-A115 for all pins.
5. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

NCN3612B

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. All Typical values are at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
POWER SUPPLY						
$V_{\text {DD }}$	Supply Voltage Range		3.0	3.3	3.6	V
IDD	Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ or V_{DD}		250	350	$\mu \mathrm{A}$

DATA SWITCH PERFORMANCE (for both PCle and DisplayPort applications, unless otherwise noted)

$\mathrm{V}_{\text {IS }}$	Data Input/Output Voltage Range		0		1.2	V
R ${ }_{\text {ON }}$	On Resistance (Tx, Rx)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V}$ to 1.2 V , $\mathrm{I}_{\text {S }}=15 \mathrm{~mA}$		8.0	13	Ω
R_{ON}	On Resistance (D, HPD, AUX)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V}$ to $1.2 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$		9.0	13	Ω
RON(lat)	On Resistance Flatness	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA} \\ \\ \\ (\text { Note } 6) \end{gathered}$		0.1	1.24	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching (Tx, Rx)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}$		0.35		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Matching (D, HPD, AUX)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}$		0.35		Ω
C_{ON}	On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$, Switch On, Open Output		2.1		pF
CofF	Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$, Switch Off		1.6		pF
IoN	$\begin{aligned} & \text { On Leakage Current } \\ & \text { (IN_/ X/OUT) } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{Vx}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, 1.2 \mathrm{~V}$; Switch On to D/HPD/AUX or Tx/Rx; outputs unconnected	-1		+1	$\mu \mathrm{A}$
IofF	Off Leakage Current (D/Tx/HPD/Rx/AUX)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, 1.2 \mathrm{~V} ; \\ & \text { Switch Off; } \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{HPD}}=\mathrm{V}_{\mathrm{AUX}} \overline{\mathrm{r}} \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{HPD}}= \\ & \mathrm{V}_{\mathrm{AUX}} \text { set to } 1.2 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$

CONTROL LOGIC CHARACTERISTICS (SEL and LE pins)

V_{IL}	Off voltage input		0		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	High voltage input		2		$\mathrm{~V}_{\mathrm{DD}}$	V
I_{IN}	Off voltage input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}	-1		+1	$\mu \mathrm{~A}$
C_{IN}	High voltage input	$\mathrm{f}=1 \mathrm{MHz}$		1		pF

DYNAMIC CHARACTERISTICS

BR	Signal Data Rate		8	Gbps
D_{IL}	Differential Insertion Loss	$\mathrm{f}=100 \mathrm{MHz}$	-0.7	dB
		$\mathrm{f}=2.7 \mathrm{GHz}$	-1.3	
		$\mathrm{f}=4 \mathrm{GHz}$	-2	
DISO	Differential Off Isolation	$\mathrm{f}=100 \mathrm{MHz}$	-54	dB
		$\mathrm{f}=2.7 \mathrm{GHz}$	-23	
		$\mathrm{f}=4 \mathrm{GHz}$	-18	
$\mathrm{D}_{\text {CTK }}$	Differential Crosstalk	$\mathrm{f}=100 \mathrm{MHz}$	-50	dB
		$\mathrm{f}=2.7 \mathrm{GHz}$	-32	
		$\mathrm{f}=4 \mathrm{GHz}$	-30	
D_{RL}	Differential Return Loss	$\mathrm{f}=100 \mathrm{MHz}$	-20	dB
		$\mathrm{f}=3.7 \mathrm{GHz}$	-10	
		$\mathrm{f}=4 \mathrm{GHz}$	-5	

6. Guaranteed by characterization and/or design.

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{b} \text {-b }}$	Bit-to-bit skew	Within the same differential pair		7		ps
$\mathrm{t}_{\mathrm{ch}-\mathrm{ch}}$	Channel-to-channel skew	Maximum skew between all channels		55		ps

SELECTION PINS SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {SELON }}$	SEL to Switch turn ON time	$\mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{LE}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		9.5		ns
$\mathrm{~T}_{\text {SELOFF }}$	SEL to Switch turn OFF time	$\mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{LE}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		5		ns
$\mathrm{~T}_{\text {SET }}$	LE setup time SEL to LE	$\mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{LE}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1		ns
$\mathrm{~T}_{\text {HOLD }}$	LE hold time LE to SEL	$\mathrm{V}_{\mathrm{IS}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{LE}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1		ns

TYPICAL OPERATING CHARACTERISTICS

Figure 4. Reference DisplayPort 1.2 Eye Diagram without Switch at 5.4 Gbps, $340 \mathrm{mV}_{\mathrm{pp}}$ Differential Swing

Figure 6. Reference PCle 3.0 Eye Diagram without Switch at 8 Gbps, 800 mV pp Differential Swing

Figure 5. DisplayPort 1.2 Eye Diagram through NCN3612B at $5.4 \mathrm{Gbps}, 340 \mathrm{mV}$ pp Differential Swing

Figure 7. PCle 3.0 Eye Diagram through NCN3612B at 8 Gbps, 800 mV pp Differential Swing

Figure 8. Differential Insertion Loss

Figure 9. Differential Crosstalk

Figure 10. Differential Off Isolation

Figure 11. Differential Return Loss

Figure 12. R_{ON} vs. $\mathrm{V}_{\text {IS }}$

PARAMETER MEASUREMENT INFORMATION

VNA Source

Figure 13. Differential Insertion Loss ($\mathrm{S}_{\mathrm{DD} 21}$) and Differential Return Loss ($\mathrm{S}_{\mathrm{DD11}}$)

Figure 15. Differential Crosstalk ($\mathrm{S}_{\mathrm{DD} 21}$)

Figure 14. Differential Off Isolation ($\mathrm{S}_{\mathrm{DD} 21}$)

Figure 16. Bit-to-Bit and Channel-to-Channel Skew

Figure 17. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$

Figure 18. Off State Leakage

Figure 19. On State Leakage

PACKAGE DIMENSIONS

WQFN56 5x11, 0.5P
CASE 510AK-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.70	0.80
A1	---	0.05
A3	0.20 REF	
b	0.20	0.30
D	5.00 BSC	
D2	2.30	2.50
E	11.00 BSC	
E2	8.30	8.50
e	0.50 BSC	
K	0.20 MIN	
L	0.30	0.50
L1	---	0.15

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

