NOCAP™ LongPlay **Headphone Amplifier** NCP2817 is a dual LongPlay true ground headphone amplifier designed for portable communication device applications such as mobile phones. This part is capable of delivering typical 27 mW of continuous average power into a 32 Ω load from a 1.8 V power supply with a THD+N of 1%. Based on the power supply delivered to the device, an internal power management block generates a symmetrical positive and negative voltage. Thus, the internal amplifiers provide outputs referenced to Ground and the losses are reduced which helps to increase the battery life. In this NOCAP configuration, the two external heavy coupling capacitors can be removed. It offers significant space and cost savings compared to a typical stereo application. NCP2817 is available with internal gain of -1.5 V/V. It reaches a superior -100 dB PSRR and noise floor. Thus, it offers high fidelity audio sound, as well as a direct connection to the battery. It contains circuitry to prevent from "Pop & Click" noise that would otherwise occur during turn-on and turn-off transitions. The device is available in 12 bump CSP package (1.62 x 1.22, 0.4P) which helps to save space on the board. #### **Features** - NOCAP Output Eliminates DC-Blocking Capacitors: - Saves Board Area - Saves Component Cost - No Low-Frequency Response Attenuation - LongPlay Architecture: Increase the Battery Life - High PSRR (-100 dB): Direct Connection to the Battery - High SNR Performance (100 dB) - "Pop and Click" Noise Protection Circuitry - Internal Gain (-1.5 V/V) or External Adjustable Gain - Ultra Low Current Shutdown Mode - High Impedance Mode - 1.6 V 5.5 V Operation - Thermal Overload Protection Circuitry - CSP 1.62 x 1.22, 0.4P - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **Typical Applications** - Headset Audio Amplifier for - · Cellular Phones - MP3 player - Personal Digital Assistant and Portable Media Player - Portable devices #### ON Semiconductor® www.onsemi.com #### **MARKING DIAGRAM** 12 PIN CSP **FC SUFFIX** CASE 499BJ Assembly Location = Wafer Lot = Year WW = Work Week Pb-Free Package #### PIN ASSIGNMENT (Top View) 12-Pin 1.2 x 1.6 mm CSP #### ORDERING INFORMATION See detailed ordering and shipping information on page 9 of this data sheet. Figure 1. Block Diagram # PIN FUNCTION DESCRIPTION | | PIN I GIVE HON DESCRIPTION | | | | | | |-----|----------------------------|-------------------|--|--|--|--| | Pin | Pin
Name | Type | Description | | | | | A1 | C _{PM} | Input /
Output | Charge pump flying capacitor negative terminal. A 1 μF ceramic capacitor to C_{PP} is required | | | | | A2 | P_{VM} | Output | Charge pump output. A 1 μF ceramic capacitor to ground is needed | | | | | А3 | INL | Input | Left input of the audio source | | | | | A4 | IN _R | Input | Right input of the audio source | | | | | B1 | P _{GND} | Ground | Power ground. This pin should be connected directly to the ground plane. | | | | | B2 | /SD | Input | Enable activation. | | | | | B4 | S _{GND} | Ground | Sense Ground. Connect to shield terminal of headphone jack or ground plane. | | | | | C1 | C _{PP} | Input /
Output | Charge pump flying capacitor positive terminal. A 1 μF ceramic capacitor to C_{PM} is required | | | | | C2 | V _P | Power | Positive supply voltage. Connected to single secondary cell Lithium-Ion battery or any other kind of power supply | | | | | СЗ | OUTL | Output | Left audio channel output signal | | | | | C4 | OUT _R | Output | Right audio channel output signal | | | | | ВЗ | A _{GND} | Ground | Analog ground. This pin should be connected directly to the GND plane. Careful layout and no direct connection to other ground pins are required to ensure good noise immunity | | | | #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-------------------|------------------------------|------| | V _P Pin: Power Supply Voltage (Note 1) | V _P | -0.3 to + 6.0 | V | | /SD Pin: Input | V _{mr1} | -0.3 to V _P + 0.3 | V | | Human Body Model (HBM) ESD Rating are (Notes 2 and 3) | ESD HBM | 2000 | ٧ | | Machine Model (MM) ESD Rating are (Note 2 and 3) | ESD MM | 200 | V | | CSP 1.62 x 1.22, 0.4P package (Note 6 and 7) Thermal Resistance Junction to Case | $R_{ hetaJC}$ | (Note 7) | °C/W | | Operating Ambient Temperature Range | T _A | -40 to + 85 | °C | | Operating Junction Temperature Range | TJ | -40 to + 125 | °C | | Maximum Junction Temperature (Note 6) | T _{JMAX} | + 150 | °C | | Storage Temperature Range | T _{STG} | -65 to + 150 | °C | | Moisture Sensitivity (Note 5) | MSL | Level 1 | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Maximum electrical ratings are defined as those values beyond which damage to the device may occur at $T_A = 25^{\circ}C$. - 2. According to JEDEC standard JESD22-A108B. - 3. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22-A114 for all pins. Machine Model (MM) ±200 V per JEDEC standard: JESD22-A115 for all pins. - 4. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78 class II. - 5. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A. - 6. The thermal shutdown set to 150 °C (typical) avoids irreversible damage on the device due to power dissipation. 7. The R_{0CA} is dependent on the PCB heat dissipation. The maximum power dissipation (P_D) is dependent on the min input voltage, the max output extract and outputs leaves a selected. output current and external components selected. $$R_{\theta CA} = \frac{125 - T_A}{P_D} - R_{\theta JC}$$ **ELECTRICAL CHARACTERISTICS** Min & Max Limits apply for T_A between -40° C to $+85^{\circ}$ C and T_J up to $+125^{\circ}$ C for $V_P = 3.6$ V (Unless otherwise noted). Typical values are referenced to $T_A = +25$ °C and $V_P = 3.6$ V. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------|---------------------------------|---|------|----------|------|-------------------| | V _{BATTERY} | Supply voltage range | | 1.6 | | 5.5 | V | | I _{SD} | Shutdown current | 7/1 | | | 1 | μΑ | | IQ | Quiescent current | V _P = 1.8 V | | 2.3 | 3.0 | mA | | R _{IN} | Input resistance | | 7.5 | 10 | 12.5 | kΩ | | R _{SD} | /SD pull-down resistor | | | 300 | | kΩ | | 17 | Maximum input signal swing | | | 2.8 | | V_{PP} | | V _{IH} | High-level input voltage SD pin | | 1.2 | | | V | | V _{IL} | Low-level input voltage SD pin | | | | 0.4 | V | | UVLO | UVLO threshold | Falling edge | | 1.4 | | V | | UVLO _{HYS} | UVLO hysteresis | | | 100 | | mV | | T _{SD} | Thermal shutdown temperature | | | 160 | | °C | | V _{OS} | Output offset voltage | Input AC grounded | | ± 0.5 | | mV | | T _{WU} | Turning On time | | | 1 | | ms | | V _{LP} | Max Output Swing (peak value) | V_P = 1.8 V, Headset = 32 Ω | 1.13 | | | V _{peak} | | Po | Max Output Power (Note 8) | V_P = 1.8 V, THD+N = 1%
Headset = 16 Ω
Headset = 32 Ω | 20 | 41
27 | | mW | - 8. Guaranteed by design and characterized. - 9. Typical application circuit as depicted ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_A between -40°C to +85°C and T_J up to + 125°C for V_P = 3.6 V (Unless otherwise noted). Typical values are referenced to T_A = + 25°C and V_P = 3.6 V. | | Po | Parameter | Conditions | Min | Тур | Max | Unit | |--|------------------|---|--|-------|------|-------|------| | PSRR Power Supply Rejection Ratio Inputs Shorted to Ground F = 217 Hz to 1 kHz -100 THD+N Total Harmonic Distortion + Noise Headset = 16 Ω POUT = 10 mW, F = 1 kHz 0.02 THD+N Total Harmonic Distortion + Noise Headset = 32 Ω POUT = 10 mW, F = 1 kHz 0.02 THD+N Total Harmonic Distortion + Noise Headset = 32 Ω VOUTR = 400 mV, F = 1 kHz -80 SNR Signal to noise ratio 100 Z_{SD} Output Impedance in Shutdown Mode 12 Max Channel to channel gain tolerance B Version only TA = +25°C -2 ±0.3 +2 F_{SW1} Headset charge pump switching frequency POUT > 500 μW 1 1 | - 0 | Max Output Power | Headset = 16 Ω | | | | mW | | THD+N Total Harmonic Distortion + Noise Headset = 16Ω $P_{OUT} = 10 \text{ mW}, F = 1 \text{ kHz}$ THD+N Total Harmonic Distortion + Noise Headset = 32Ω $P_{OUT} = 10 \text{ mW}, F = 1 \text{ kHz}$ THD+N Total Harmonic Distortion + Noise Headset = 32Ω $P_{OUT} = 10 \text{ mW}, F = 1 \text{ kHz}$ THD+N Total Harmonic Distortion + Noise VouTR - VoUTL = $400 \text{ mV}, F = 1 \text{ kHz}$ SNR Signal to noise ratio 100 Z _{SD} Output Impedance in Shutdown Mode 12 Max Channel to channel gain tolerance B Version only $T_A = +25^{\circ}C$ F _{SW1} Headset charge pump switching frequency 14 metals and 15 metals metal | | Crosstalk (Note 8) | Headset ≥ 16 Ω | | -95 | -80 | dB | | $P_{OUT} = 10 \text{ mW, } F = 1 \text{ kHz}$ $THD+N \qquad Total \ Harmonic \ Distortion + Noise \qquad Headset = 32 \ \Omega \\ P_{OUT} = 10 \text{ mW, } F = 1 \text{ kHz} \qquad 0.02$ $P_{OUT} = 10 \text{ mW, } F = 1 \text{ kHz} \qquad 0.02$ P_{O | PSRR | Power Supply Rejection Ratio | | | -100 | | dB | | $P_{OUT} = 10 \text{ mW, } F = 1 \text{ kHz}$ $THD+N \qquad Total Harmonic Distortion + Noise \qquad Headset = 32 \ \Omega \\ V_{OUTR} - V_{OUTL} = 400 \text{ mV, } F = 1 \text{ kHz} \qquad -80 -8$ | THD+N | Total Harmonic Distortion + Noise | | | 0.02 | | % | | $V_{OUTR} - V_{OUTL} = 400 \text{ mV}, F = 1 \text{ kHz}$ $SNR \qquad Signal \text{ to noise ratio} \qquad \qquad 100$ $Z_{SD} \qquad Output \text{ Impedance in Shutdown Mode} \qquad \qquad 12$ $Max \text{ Channel to channel gain tolerance} \qquad B \text{ Version only} \\ T_A = +25^{\circ}\text{C} \qquad \qquad -2 \qquad \pm 0.3 \qquad +2$ $F_{SW1} \qquad \text{Headset charge pump switching frequency} \qquad P_{OUT} > 500 \ \mu\text{W} \qquad \qquad 1$ | THD+N | Total Harmonic Distortion + Noise | | | 0.02 | | % | | Z_{SD} Output Impedance in Shutdown Mode 12 Max Channel to channel gain tolerance B Version only $T_A = +25$ °C +2 ±0.3 +2 F _{SW1} Headset charge pump switching frequency 1 1 | THD+N | Total Harmonic Distortion + Noise | | | -80 | 4 | dB | | Max Channel to channel gain tolerance B Version only $T_A = +25^{\circ}C$ -2 ±0.3 +2 F _{SW1} Headset charge pump switching frequency P _{OUT} > 500 μW 1 | SNR | Signal to noise ratio | | | 100 | CIP | dB | | $T_A = +25^{\circ}\text{C}$ F _{SW1} Headset charge pump switching frequency P _{OUT} > 500 μ W 1 | Z _{SD} | Output Impedance in Shutdown Mode | | | 12 | 310 | kΩ | | quency | | Max Channel to channel gain tolerance | B Version only
T _A = +25°C | -2 | ±0.3 | +2 | % | | F _{SW2} Headset charge pump switching frequency A _V Voltage Gain 8. Guaranteed by design and characterized. 9. Typical application circuit as depicted | F _{SW1} | | P _{OUT} > 500 μW | ME | 1 | | MHz | | 8. Guaranteed by design and characterized. 9. Typical application circuit as depicted | F _{SW2} | Headset charge pump switching frequency | P _{OUT} < 500 μW | eWi | 125 | | kHz | | 8. Guaranteed by design and characterized. 9. Typical application circuit as depicted PLASENTALE REPAREMENTALE PLASENTALE | A _V | Voltage Gain | OF OR | -1.54 | -1.5 | -1.46 | V/V | | THIS D REF | Typical ap | oplication circuit as depicted | - "WL 100, 50, | | | | | ^{8.} Guaranteed by design and characterized.9. Typical application circuit as depicted #### TYPICAL OPERATING CHARACTERISTICS # TYPICAL OPERATING CHARACTERISTICS #### **DETAIL OPERATING DESCRIPTION** Figure 12. Typical Application Circuit ## **Detailed Descriptions** The NCP2817 stereo headphone amplifier features the ON Semiconductor NOCAP architecture that eliminates the large output DC-blocking capacitors required by conventional headphone amplifier. An integrated power supply block generates low noise positive (V_{RP}) and negative (V_{RM}) voltages from the positive supply voltage (V_P). The stereo headphone amplifiers operate from these symmetrical supplies. Amplifiers output are referenced to ground (GND), instead of DC voltage (typically $V_P/2$) for conventional headphone amplifiers. The NCP2817 integrates two true ground amplifiers, an Under Voltage Lock Out (UVLO), a short circuit protection and a thermal shutdown circuitry. In addition, a special circuit is embedded to eliminate pop and click noise that occurs during turn on and turn off time. NCP2817 has an embedded gain setting network set to 1.5 V/V. #### **NOCAPTM** NOCAP is a patented architecture which requires only two small ceramic capacitors. From single positive only rail, it generates the symmetrical positive and negative rails that supplies amplifiers output stage. This feature allows the output of the amplifiers to be biased around the ground level and eliminates need of huge DC voltage blocking capacitors. #### LongPlay Architecture The "LongPlay" feature, based on unique ultra low current consumption architecture saves more battery life by reducing the quiescent current depending on the load. #### **Current Limit Protection Circuit** The NCP2817 output power stage features a protection circuitry against short to ground. The current is limited to 300 mA typical when an output is shorted to GND and a signal is applied to the input. #### **Thermal Overload Protection** Internal amplifiers are switched off when the temperature exceed 160°C, and will be switched back on when the temperature decreases below 140°C. #### **Under Voltage Lockout** When the battery voltage decreases below 1.4 V, the amplifiers are turned off. The hysteresis to turn back on the device is 100 mV. #### Pop and Click Suppression Circuitry The NCP2817 includes a special circuitry to eliminate any pop and click noise during turn on and turn off time. During uncontrolled turn on and turn off sequences, normal amplifiers would create an output offset. This offset drives the loudspeaker and generates a parasitic noise called "pop and click noise". The NCP2817 carefully controls the amplifier output stages during turn on and off sequences to eliminate this problem. Input capacitor selection The input coupling capacitor blocks the DC voltage at the amplifier input terminal. This capacitor creates a high–pass filter with the $R_{\rm IN}$ input resistor (10 k Ω for NCP2817). The size of the capacitor must be large enough to cut off low frequencies without severe attenuation in the audio bandwidth (20 Hz - 20 kHz). The cut off frequency for the input high-pass filter is: $$F_c = \frac{1}{2\pi R_{in} C_{in}}$$ With $R_{IN} = 10 \text{ k}\Omega$ A $F_c < 20 \text{ Hz}$ is recommended. #### **Charge Pump Capacitor Selection** Use ceramic capacitor with low ESR for better performances. X5R / X7R capacitor is recommended. The C_{FLY} flying capacitor serves to transfer charge during the generation of the negative voltage and directly affects load regulation and charge pump output impedance. A too low value results in poor current performance while higher value increases charge pump regulation and lowers output impedance (until internal switches $R_{DS(on)}$ becomes predominant). We recommend 1 μF , but lower values can be uses in systems with lower audio power requirements. The C_{PVM} capacitor must be equal at least to the C_{FLY} capacitor to allow maximum transfer charge. In addition, the ESR of C_{PVM} capacitor directly affects ripple on P_{VM} as well as charge pump output impedance. We recommend 1 μF , but lower values can be uses in systems with lower audio power requirements. Table 1. SUGGEST TYPICAL VALUE AND MANUFACTURER | Value | Reference | Package | Manufac-
turer | |-------|------------------|---------|-------------------| | 1 μF | C1005X5R0J105K | 0402 | TDK | | 1 μF | GRM155R60J105K19 | 0402 | Murata | #### **Power Supply Decoupling Capacitor (C1)** The NCP2817 is a NOCAP amplifier and proper power supply bypassing is critical to reduce noise, high THD+N and PSRR performances. It is recommended to use a 1uF X5R / X7R ceramic capacitor and place it as close as possible to the V_P pin. #### **Shutdown Function** The device enters in shutdown mode when shutdown signal is low. During the shutdown mode, the DC quiescent current of the circuit does not exceed 1 μA . In this configuration, the output impedance is 20 k Ω on each output. #### **Layout Recommendation** Minimize trace impedance of the power, the ground and all output traces. The voltage drop between NCP2817 and the headset load results in decrease of output power and efficiency. We strongly recommend using wide traces for power supply inputs to optimize the power supplies efficiency and regulation performances. Good ground connection improves the amplifier immunity to external switching noise, improves crosstalk between channels as well as general audio performances. We also recommend wide PCB traces for the power outputs routing. If possible, we recommend to use local Ground and power planes. The power supply decoupling capacitor C_{BYP} will help to minimize the input voltage ripple during fast load transients. It is important to minimize traces impedances from C_{BYP} to GND plane and from C_{BYP} to V_P pin as close as possible of the V_P pin. C_{BYP} should be placed as close as possible to the V_P pin. The charge pump creates the VPM negative voltage that supplies the amplifiers. C_{FLY} and C_{PVM} capacitors location and access impedances are also critical. Connect C_{FLY} and C_{PVM} as close as possible of the NCP2817 and route their terminal to the associated pin with wide traces to minimize impedance and optimize the charge pump ripple and efficiency performances. In addition, the C_{FLY} and C_{PVM} capacitors as well as the traces connecting capacitors to the device should be kept away from the audio input and output traces to avoid any switching noise coupling with the audio signal. A_{GND} is the ground reference for all internal analog features so, particular attention should govern the A_{GND} pin connection to the Ground reference plane. A_{GND} pin should be directly connected to the board Ground reference plane and keep it separated from other ground connections. The A_{GND} to GND ground reference plane trace should not be shared with the trace between S_{GND} or P_{GND} and the Ground plane. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|-----------------------| | NCP2817BFCCT2G | WLCSP12
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### WLCSP12 1.62x1.22x0.539 CASE 499BJ ISSUE D **DATE 02 JUN 2022** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - CONTROLLING DIMENSION: MILLIMETERS - DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO DATUM C. - 4. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS. - 5. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. #### RECOMMENDED MOUNTING FOOTPRINT* For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. # PIN 1 REFERENCE TOP VIEW DETAIL SCALE 1:3 ## **GENERIC MARKING DIAGRAM*** XXXXX **ALYWW** XXXXX = Specific Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: 98AON48124E Electronic versions are uncontrolled except when Printed versions are uncontrolled except when sta | | | | |---|-------------------------|--|-------------| | DESCRIPTION: | WLCSP12 1.62x1.22x0.539 | | PAGE 1 OF 1 | onsemi and Onsemi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales