onsemi

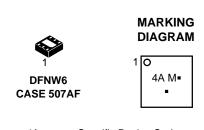
3A Ultra-Small Low Ron and Controlled Load Switch with Auto-Discharge Path

NCV451

The NCV451 is a very low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, due to a current consumption optimization with NMOS structure, leakage currents are eliminated by isolating connected IC on the battery when not used.

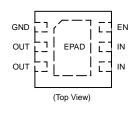
Output discharge path is also embedded to eliminate residual voltages on the output rail.


Proposed in a wide input voltage range from 0.75 V to 5.5 V, in a small DFNW6 2.2 x 2 mm, 0.65 pitch package.

Features

- 0.75 V 5.5 V Operating Range
- 21 m Ω N MOSFET from 3.6 V to 5.5 V
- 22 m Ω N MOSFET from 1 V to 3.3 V
- DC Current Up to 3 A
- Output Auto-Discharge
- Active High EN Pin
- DFNW6 2.2 x 2 mm, 0.65 pitch
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications


- ADAS System
- Camera Module
- Power Management

(Note: Microdot may be in either location)

PINOUT DIAGRAM

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 8 of this data sheet.

1

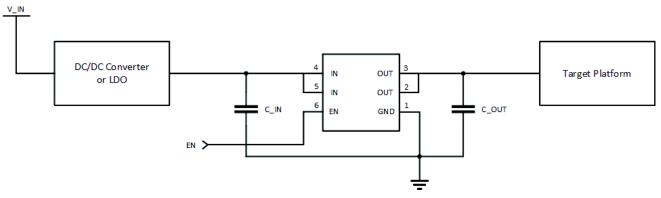
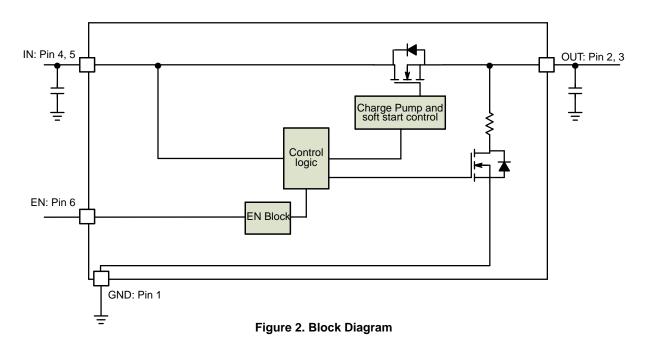



Figure 1. Typical Application Circuit

PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Туре	Description
IN	4, 5	POWER	Load-switch input voltage; connect a 1 μF or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	1	POWER	Ground connection.
EN	6	INPUT	Enable input, logic high turns on power switch.
OUT	2, 3	OUTPUT	Load-switch output; connect a 1 μF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.
EPAD	7	POWER	Exposed pad, connect to ground potential.

BLOCK DIAGRAM

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
IN, OUT, EN, Pins: (Note 1)	V _{EN,} V _{IN,} V _{OUT}	-0.3 to + 7.0	V
From IN to OUT Pins: Input/Output (Note 1)	V _{IN,} V _{OUT}	0 to + 7.0	V
Human Body Model (HBM) ESD Rating are (Notes 1 and 2)	ESD HBM	1.5	kV
Maximum Junction Temperature	TJ	-40 to + 125	°C
Storage Temperature Range	T _{STG}	-40 to + 150	°C
Moisture Sensitivity (Note 3)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
 According to JEDEC standard JESD22-A108.
 This device series contains ESD protection and passes the following tests:

Human Body Model (HBM) ±1.5 kV per JEDEC standard: JESD22-A114 for all pins. 3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Operational Power Supply		0.75		5.5	V
V _{EN}	Enable Voltage		0		5.5	V
T _A	Ambient Temperature Range		-40	25	+105	°C
TJ	Junction Temperature Range		-40	25	+125	°C
C _{IN}	Decoupling input capacitor		1			μF
C _{OUT}	Decoupling output capacitor		1			μF
$R_{\theta JA}$	Thermal Resistance Junction to Air	(Note 4)		122		°C/W
I _{OUT}	Maximum DC current				3	А
PD	Power Dissipation Rating (Note 5)			0.164		W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
4. Value based on 1s0p board with copper 650 mm² (or 1 in²) of 1 oz thickness and FR4 PCB substrate

5. The maximum power dissipation (P_D) is given by the following formula:

$$\mathsf{P}_\mathsf{D} = \frac{\mathsf{T}_\mathsf{JMAX} - \mathsf{T}_\mathsf{A}}{\mathsf{R}_{\mathsf{\theta}\mathsf{J}\mathsf{A}}}$$

ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T_J between -40 °C to +125 °C for V_{IN} between 0.75 V to 5.0 V (Unless otherwise noted). Typical values are referenced to T_A = + 25 °C and V_{IN} = 3.6 V (Unless otherwise noted).

Symbol	Parameter		Conditions	Min	Тур	Max	Unit	
POWER S	WITCH							
			$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		21	40		
		V _{IN} = 5 V	T _J = 125°C			50		
			$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		21	40		
		V _{IN} = 3.6 V	T _J = 125°C			50		
			$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		21	40	- mΩ	
	Static drain-source on-state resistance	V _{IN} = 3.3 V	T _J = 125°C			50		
R _{DS(on)}		N 95.V	$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		21	40		
		V _{IN} = 2.5 V	T _J = 125°C			50		
		V _{IN} = 1.8 V	$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		21	40		
			T _J = 125°C			50		
		V _{IN} = 1.0 V	$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		23	45		
			T _J = 125°C			55		
		V - 0.75 V	$I_{OUT} = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$		25	45		
		V _{IN} = 0.75 V	T _J = 125°C			55		
R _{DIS}	Output discharge path		EN = low		1.0	1.7	kΩ	
V _{IH}	High-level input voltage			0.8			V	
V _{IL}	Low-level input voltage					0.4	V	
I _{EN}	EN pin leakage current	V _{IN} = 3.6 V				0.1	μΑ	
QUIESCEN	IT CURRENT							
lstd	Standby current	V _{IN} = 4.2 V	EN = low, No load, $T_A = -40^{\circ}C to 85^{\circ}C$		0.9	3	μΑ	

lstd	Standby current	V _{IN} = 4.2 V	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	0.9	3	μΑ
lq	Quiescent current	$\begin{array}{l} V_{IN} = 3.6 \ V \\ V_{IN} = 2.5 \ V \\ V_{IN} = 1.8 \ V \\ V_{IN} = 1.2 \ V \\ V_{IN} = 1.0 \ V \\ V_{IN} = 0.75 \ V \end{array}$	EN = high, No load (Note 6)	8	15	μΑ

TIMINGS

T _{EN}	Enable time		R_L = 25 Ω , C_{OUT} = 1 μ F		600	
Τ _R	Output rise time	V _{IN} = 3.6 V	R_L = 25 Ω , C_{OUT} = 1 μ F		800	
T _{ON}	ON time (T _{EN +} T _{R)}	(Note 7)	R_L = 25 Ω , C_{OUT} = 1 μ F	1	1400	μS
Τ _F	Output fall time		R_L = 25 Ω , C_{OUT} = 1 μ F		55	

TIMINGS

T _{EN}	Enable time		R_L = 10 Ω , C_{OUT} = 0.1 μ F	540	
Τ _R	Output rise time	V _{IN} = 3.6 V	R_L = 10 Ω , C_{OUT} = 0.1 μ F	670	
T _{ON}	ON time (T _{EN +} T _{R)}	(Note 7)	R_L = 10 Ω , C_{OUT} = 0.1 μ F	1210	μs
Τ _F	Output fall time		R_L = 10 Ω , C_{OUT} = 0.1 μ F	2.5	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Production tested at $V_{IN} = 3.6 V$. 7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground

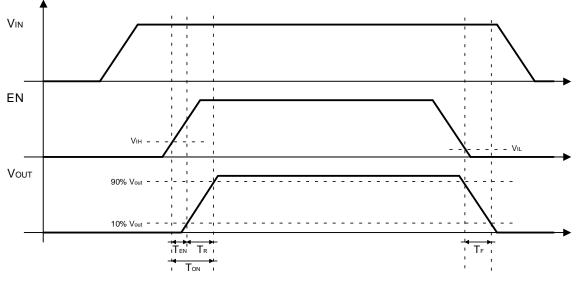
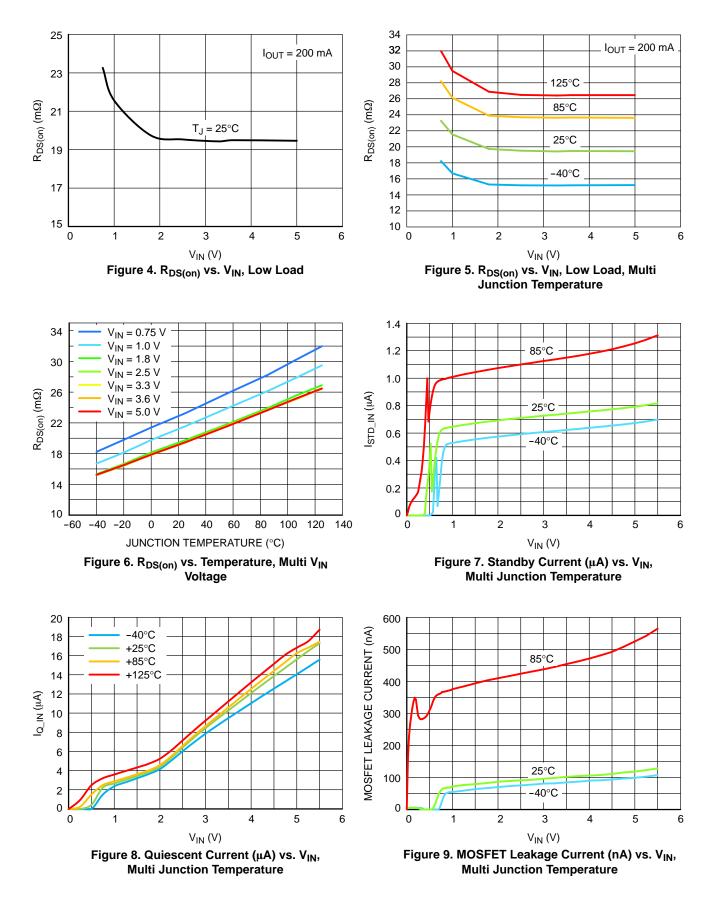
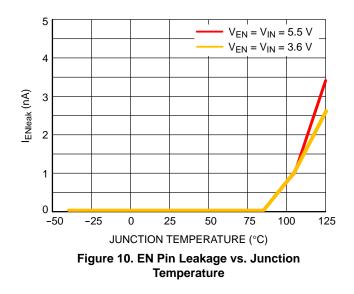




Figure 3. Enable, Rise and Fall Time

ELECTRICAL CURVES

ELECTRICAL CURVES

FUNCTIONAL DESCRIPTION

Overview

The NCV451 is a high side N channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a wide range of battery from 0.75 V to 5.5 V.

Enable Input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing N-MOSFET switch off.

The IN/OUT path is activated with a minimum of Vin of 0.75 V and EN forced to high level.

Auto Discharge

N-MOSFET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin. The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and $V_{IN} > 0.75$ V.

In order to limit the current across the internal discharge N-MOSFET, the typical value is set at R_{DIS}.

C_{IN} and C_{OUT} Capacitors

PCB Recommendations

IN and OUT, 1 μ F, at least, capacitors must be placed as close as possible the part to for stability improvement.

The NCV451 integrates an up to 3 A rated NMOS FET,

and the PCB design rules must be respected to properly

evacuate the heat out of the silicon. By increasing PCB area,

especially around IN and OUT pins, the $R_{\theta JA}$ of the package

can be decreased, allowing higher power dissipation. Routing example: 2 oz, 4 layers with vias across 2 internal

APPLICATION INFORMATION

inners.

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

$$\mathsf{P}_{\mathsf{D}} = \mathsf{R}_{\mathsf{DS(on)}} \times \left(\mathsf{I}_{\mathsf{OUT}}\right)^2$$

 P_D = Power dissipation (W)

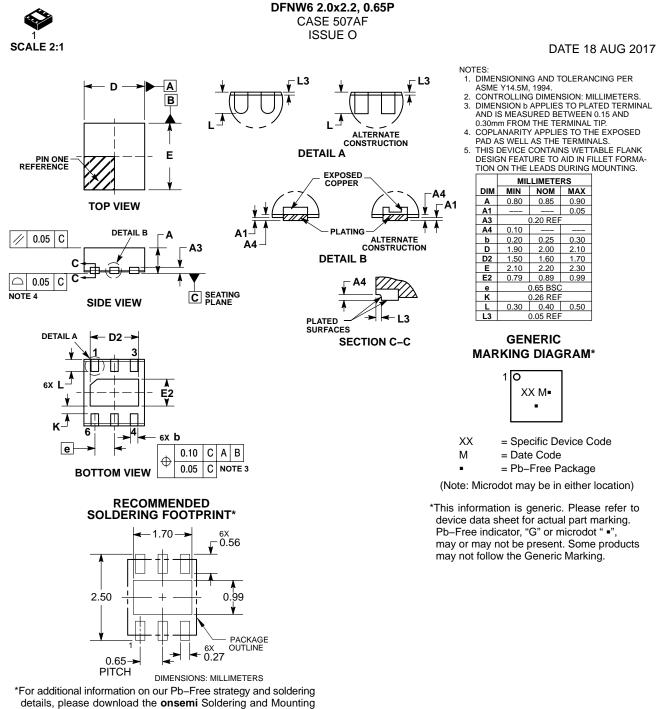
 $R_{DS(on)}$ = Power MOSFET on resistance (Ω)

 I_{OUT} = Output current (A)

$$\mathsf{T}_{\mathsf{J}} = \mathsf{P}_{\mathsf{D}} \times \mathsf{R}_{\mathsf{H}\mathsf{J}\mathsf{A}} + \mathsf{T}_{\mathsf{A}}$$

 T_J = Junction temperature (°C)

 $R_{\theta JA}$ = Package thermal resistance (°C/W)


 T_A = Ambient temperature (°C)

ORDERING INFORMATION

Device	Marking	Option	Package	Shipping [†]
NCV451AMNWTBG	4A	Auto Discharge 1 kΩ	DFNW6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Techniques Reference Manual, SOLDERRM/D.

 DOCUMENT NUMBER:
 98AON73486G
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 DFNW6 2.0X2.2, 0.65P
 PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>