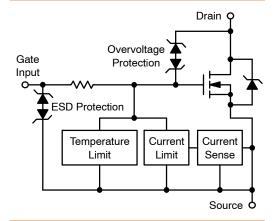


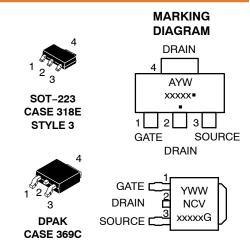
Self-Protected Low Side Driver with Temperature and Current Limit

42 V, 14 A, Single N-Channel

NCV8403A, NCV8403B

NCV8403A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.


Features


- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D MAX (Limited)
42 V	53 mΩ @ 10 V	15 A

A = Assembly Location

Y = Year

1

W, WW = Work Week xxxxx = 8403A or 8403B

G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information page 10 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 10.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	42	Vdc
Gate-to-Source Voltage	V_{GS}	±14	Vdc
Drain Current Continuous	I _D	Internally L	imited
	P _D	1.13 1.56 1.32 2.5	W
Thermal Resistance – SOT–223 Version Junction–to–Soldering Point Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2) Thermal Resistance – DPAK Version Junction–to–Soldering Point Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2)	R _{θJS} R _{θJA} R _{θJA} R _{θJA} R _{θJA}	12 110 80 2.5 95 50	°C/W
Single Pulse Inductive Load Switching Energy (V _{DD} = 25 Vdc, V _{GS} = 5.0 V, I _L = 2.8 A, L = 120 mH, R _G = 25 Ω)	E _{AS}	470	mJ
Load Dump Voltage (V _{GS} = 0 and 10 V, R _I = 2.0 Ω , R _L = 4.5 Ω , t _d = 400 ms)	V_{LD}	55	V
Operating Junction Temperature	TJ	-40 to 150	°C
Storage Temperature	T _{stg}	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted onto minimum pad size (0.412" square) FR4 PCB, 1 oz cu.

2. Mounted onto 1" square pad size (1.127" square) FR4 PCB, 1 oz cu.

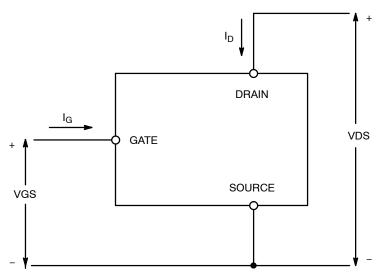


Figure 1. Voltage and Current Convention

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

DFF CHARACTERISTICS Drain-to-Source Clamped Breakdown Voltage V(SS = 0 Vdc, Ip = 250 μAdc, T, J = -40°C to 150°C) (Note 3)	51 51 5.0 - 125 2.2 - 68 123 76 135	Vdc Vdc μAdc μAdc Vdc mV/°C mΩ			
V _{GS} = 0 Vdc, I _D = 250 μAdc) V _{GS} = 0 Vdc, I _D = 250 μAdc, I _J = -40°C to 150°C) (Note 3) 42 46 45 46 46	51 5.0 - 125 2.2 - 68 123 76 135	Vdc μAdc Vdc mV/°C mΩ			
$ \begin{array}{c} (V_{DS} = 32 \ Vdc, \ V_{GS} = 0 \ Vdc) \\ (V_{DS} = 32 \ Vdc, \ V_{GS} = 0 \ Vdc, \ T_{J} = 150^{\circ}\text{C}) \ (\text{Note } 3) \\ \end{array}{c} - \begin{array}{c} - 0.6 \\ 2.5 \\ \end{array}{c} \\ \text{Gate Input Current} \\ (V_{GS} = 5.0 \ Vdc, \ V_{DS} = 0 \ Vdc) \\ \end{array}{c} - \begin{array}{c} - 0.6 \\ 2.5 \\ \end{array}{c} \\ \text{Gate Threshold Voltage} \\ (V_{DS} = V_{GS}, \ I_{D} = 1.2 \ \text{mAdc}) \\ \text{Threshold Temperature Coefficient (Negative)} \\ \text{Static Drain-to-Source On-Resistance (Note 4)} \\ (V_{GS} = 10 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 10 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 10 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.25^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ T_{J} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 5.0 \ V_{GS} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 10 \ V_{GS} \ 0.05^{\circ}\text{C}) \\ (V_{GS} = 10 \ Vdc) \\ (V_{GS} = 10 \ Vdc) \\ (V_{$	2.2 - 68 123 76 135	νdc mV/°C mΩ			
ON CHARACTERISTICS	2.2 - 68 123 76 135	Vdc mV/°C mΩ			
	68 123 76 135	mV/°C mΩ mΩ			
(V _{DS} = V _{GS} , I _D = 1.2 mAdc)	68 123 76 135	mV/°C mΩ mΩ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76 135	mΩ			
	135				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	V			
$ \begin{array}{ c c c c c c } \hline Turn-ON Time & (10\% \ V_{IN} \ to \ 90\% \ I_D) & V_{IN} = 0 \ V \ to \ 5 \ V, V_{DD} = 25 \ V \\ \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{OFF} & 84 \\ \hline Turn-ON Time & (10\% \ V_{IN} \ to \ 90\% \ I_D) & V_{IN} = 0 \ V \ to \ 10 \ V, V_{DD} = 25 \ V, \\ \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{ON} & 15 \\ \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{ON} & 15 \\ \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{ON} & 15 \\ \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{OFF} & 116 \\ \hline Slew-Rate ON & (20\% \ V_{DS} \ to \ 50\% \ V_{DS}) & V_{IN} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V, \\ \hline Slew-Rate OFF & (80\% \ V_{DS} \ to \ 50\% \ V_{DS}) & V_{IN} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V, \\ \hline R_L = 4.7 \ \Omega & dV_{DS}/dt_{ON} & 2.43 \\ \hline SELF \ PROTECTION \ CHARACTERISTICS & (T_J = 25^{\circ}C \ unless \ otherwise \ noted) & (Note 5) \\ \hline Current \ Limit & V_{GS} = 5.0 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 10 \ V \\ \hline T_{LIM} & 12 \ 17 \\ \hline T_{CM} & 10 \ 175 \\ \hline T_{CM} & 10 \ V_{GS} = 10 \ V_{CM} & 10$					
$ \begin{array}{ c c c c c c c c } \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{OFF} & 84 \\ \hline Turn-ON Time & (10\% \ V_{IN} \ to \ 90\% \ I_D) & V_{IN} = 0 \ V \ to \ 10 \ V, \ V_{DD} = 25 \ V, \\ \hline Turn-OFF Time & (90\% \ V_{IN} \ to \ 10\% \ I_D) & I_D = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & t_{OFF} & 116 \\ \hline Slew-Rate & ON & (20\% \ V_{DS} \ to \ 50\% \ V_{DS}) & V_{In} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V, \\ \hline Slew-Rate & OFF & (80\% \ V_{DS} \ to \ 50\% \ V_{DS}) & V_{In} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V, \\ \hline R_L = 4.7 \ \Omega & dV_{DS}/dt_{ON} & 2.43 \\ \hline SELF & PROTECTION & CHARACTERISTICS & (T_J = 25^{\circ}C \ unless \ otherwise \ noted) & (Note 5) \\ \hline Current & Limit & V_{GS} = 5.0 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 5.0 \ V, \ T_J = 150^{\circ}C & (Notes \ 3, 6) & I_{LIM} & 10 & 15 \\ \hline V_{GS} = 10 \ V, \ T_J = 150^{\circ}C & (Notes \ 3, 6) & I_{LIM} & 12 & 17 \\ \hline V_{GS} = 10 \ V, \ T_J = 150^{\circ}C & (Notes \ 3, 6) & T_{LIM(off)} & 150 & 175 \\ \hline Thermal \ Hysteresis & V_{GS} = 5.0 \ Vdc & (Notes \ 3, 6) & T_{LIM(off)} & 150 & 165 \\ \hline Thermal \ Hysteresis & V_{GS} = 10 \ Vdc & (Notes \ 3, 6) & T_{LIM(off)} & - 15 \\ \hline \textbf{GATE \ INPUT \ CHARACTERISTICS} & (Note \ 3) \\ \hline \end{array}$		-			
$ \begin{array}{ c c c c c } \hline Turn-ON \ Time \ (10\% \ V_{IN} \ to \ 90\% \ I_D) & V_{IN} = 0 \ V \ to \ 10 \ V, V_{DD} = 25 \ V, \\ \hline Turn-OFF \ Time \ (90\% \ V_{IN} \ to \ 10\% \ I_D) & V_{ID} = 1.0 \ A, \ Ext \ R_G = 2.5 \ \Omega & to N & 15 \\ \hline Slew-Rate \ ON \ (20\% \ V_{DS} \ to \ 50\% \ V_{DS}) & V_{in} = 0 \ to \ 10 \ V, V_{DD} = 12 \ V, \\ \hline R_L = 4.7 \ \Omega & dV_{DS}/dt_{ON} & 2.43 \\ \hline Slew-Rate \ OFF \ (80\% \ V_{DS} \ to \ 50\% \ V_{DS}) & V_{in} = 0 \ to \ 10 \ V, V_{DD} = 12 \ V, \\ \hline R_L = 4.7 \ \Omega & dV_{DS}/dt_{ON} & 2.43 \\ \hline SELF \ PROTECTION \ CHARACTERISTICS \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted) \ (Note 5) \\ \hline Current \ Limit & V_{GS} = 5.0 \ V, V_{DS} = 10 \ V \\ V_{GS} = 5.0 \ V, V_{DS} = 10 \ V \\ V_{GS} = 10 \ V, V_{DS} = 10 \ V \\ V_{GS} = 10 \ V, V_{DS} = 10 \ V \\ V_{GS} = 10 \ V, V_{DS} = 10 \ V \\ V_{GS} = 5.0 \ V dc \ (Notes \ 3, \ 6) & T_{LIM}(off) & 150 \ 175 \\ \hline Thermal \ Hysteresis & V_{GS} = 10 \ V dc \ (Notes \ 3, \ 6) & T_{LIM}(off) & 150 \ 165 \\ \hline Thermal \ Hysteresis & V_{GS} = 10 \ V dc \ (Notes \ 3, \ 6) & T_{LIM}(off) & 150 \ 165 \\ \hline GATE \ INPUT \ CHARACTERISTICS \ (Note \ 3) \\ \hline \end{array}$		μs			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V/μs			
]			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SELF PROTECTION CHARACTERISTICS (T _J = 25°C unless otherwise noted) (Note 5)				
$\begin{aligned} & V_{GS} = 10 \text{ V, T}_{J} = 150^{\circ}\text{C (Notes 3, 6)} & 8.0 & 13 \\ \hline \text{Temperature Limit (Turn-off)} & V_{GS} = 5.0 \text{ Vdc (Notes 3, 6)} & T_{LIM(off)} & 150 & 175 \\ \hline \text{Thermal Hysteresis} & V_{GS} = 5.0 \text{ Vdc} & \Delta T_{LIM(on)} & - & 15 \\ \hline \text{Temperature Limit (Turn-off)} & V_{GS} = 10 \text{ Vdc (Notes 3, 6)} & T_{LIM(off)} & 150 & 165 \\ \hline \text{Thermal Hysteresis} & V_{GS} = 10 \text{ Vdc} & \Delta T_{LIM(on)} & - & 15 \\ \hline \text{GATE INPUT CHARACTERISTICS (Note 3)} & & & & & & & & & & & & & & & & & & &$	20 15	Adc			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 18	Adc			
	200	°C			
Thermal Hysteresis $V_{GS} = 10 \text{ Vdc}$ $\Delta T_{LIM(on)}$ - 15 GATE INPUT CHARACTERISTICS (Note 3)	_	°C			
GATE INPUT CHARACTERISTICS (Note 3)	185	°C			
	_	°C			
Device ON Gate Input Current Voc = 5 V Is - 1.0 A Ison 50					
		μΑ			
$V_{GS} = 10 \text{ V I}_{D} = 1.0 \text{ A}$ 400		1			
Current Limit Gate Input Current $V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$ I_{GCL} 0.1		mA			
V _{GS} = 10 V, V _{DS} = 10 V 0.6					
Thermal Limit Fault Gate Input Current $V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$ I_{GTL} 0.45		mA			
V _{GS} = 10 V, V _{DS} = 10 V		<u> </u>			
ESD ELECTRICAL CHARACTERISTICS (T _J = 25°C unless otherwise noted) (Note 3)					
Electro-Static Discharge Capability Human Body Model (HBM) ESD 4000 -	-	V			
Electro-Static Discharge Capability Machine Model (MM) ESD 400 -		V			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Not subject to production testing.

4. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%.

5. Fault conditions are viewed as beyond the normal operating range of the part.

6. Refer to Application Note AND8202/D for dependence of protection features on gate voltage.

TYPICAL PERFORMANCE CURVES

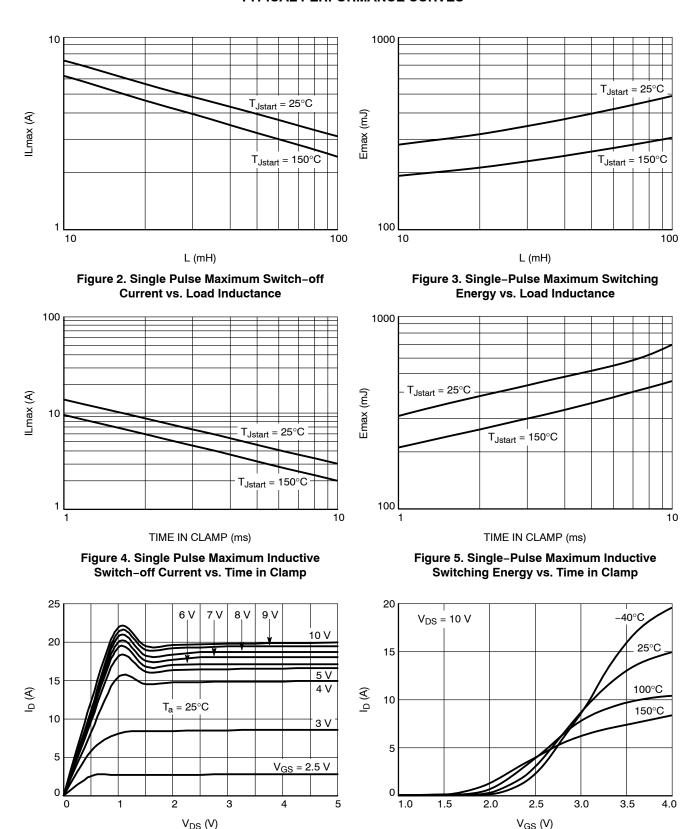


Figure 7. Transfer Characteristics

Figure 6. On-state Output Characteristics

TYPICAL PERFORMANCE CURVES

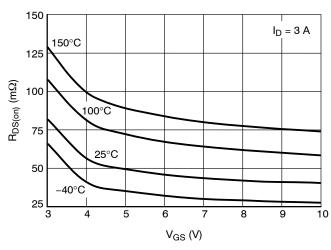


Figure 8. R_{DS(on)} vs. Gate-Source Voltage

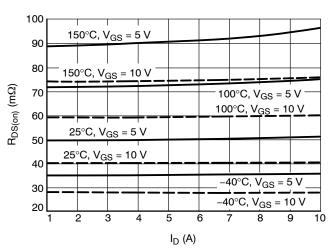


Figure 9. R_{DS(on)} vs. Drain Current

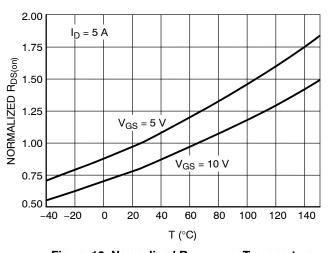


Figure 10. Normalized $R_{DS(on)}$ vs. Temperature

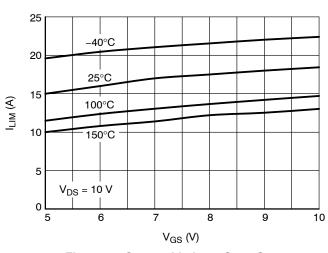


Figure 11. Current Limit vs. Gate-Source Voltage

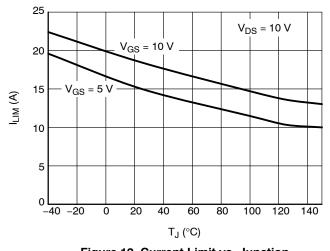


Figure 12. Current Limit vs. Junction Temperature

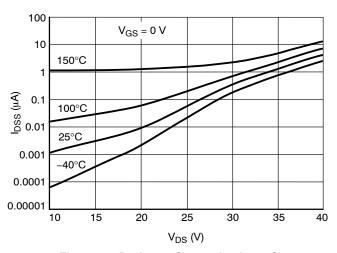


Figure 13. Drain-to-Source Leakage Current

TYPICAL PERFORMANCE CURVES

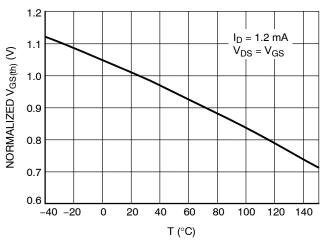


Figure 14. Normalized Threshold Voltage vs. Temperature

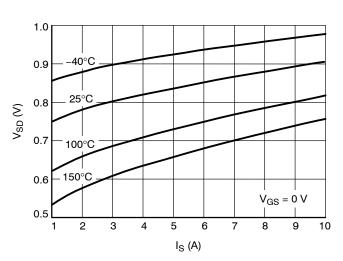


Figure 15. Source-Drain Diode Forward Characteristics

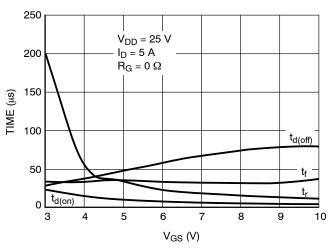


Figure 16. Resistive Load Switching Time vs.
Gate-Source Voltage

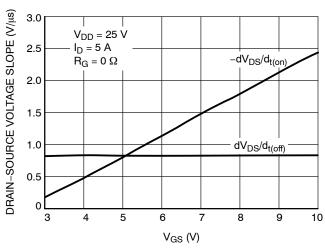


Figure 17. Resistive Load Switching
Drain-Source Voltage Slope vs. Gate-Source
Voltage

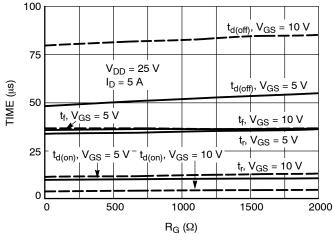


Figure 18. Resistive Load Switching Time vs.
Gate Resistance

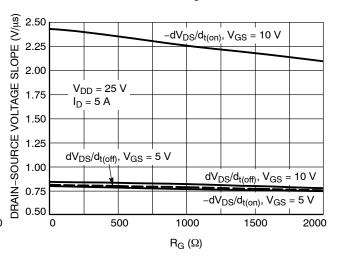


Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance

TYPICAL PERFORMANCE CURVES

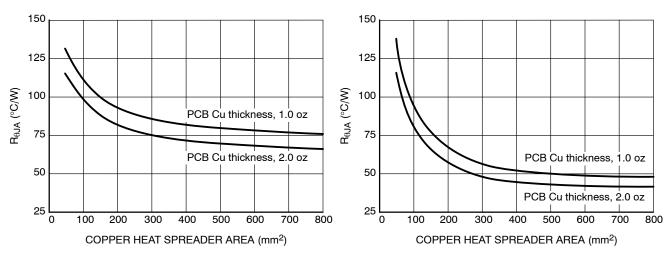


Figure 20. $R_{\theta JA}$ vs. Copper Area – SOT–223

Figure 21. $R_{\theta JA}$ vs. Copper Area – DPAK

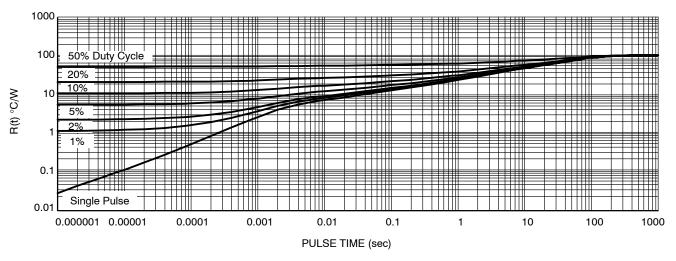


Figure 22. Transient Thermal Resistance - SOT-223 Version

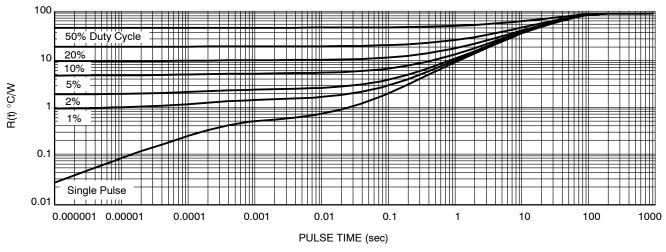


Figure 23. Transient Thermal Resistance - DPAK Version

TEST CIRCUITS AND WAVEFORMS

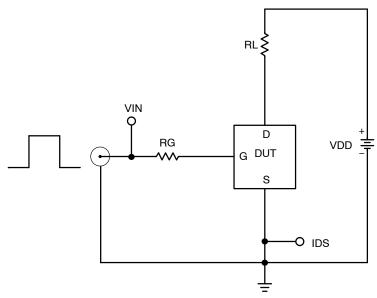


Figure 24. Resistive Load Switching Test Circuit

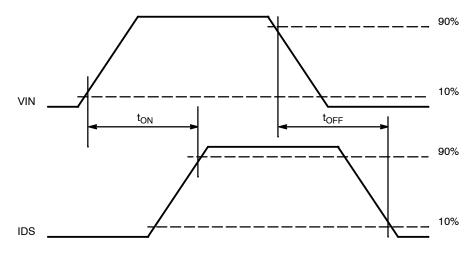


Figure 25. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

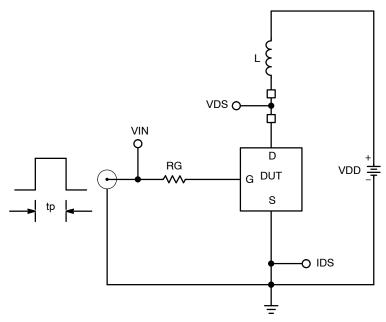


Figure 26. Inductive Load Switching Test Circuit

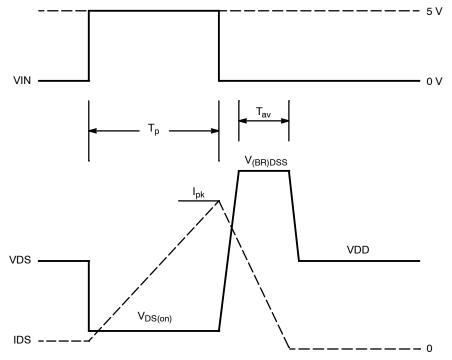


Figure 27. Inductive Load Switching Waveforms

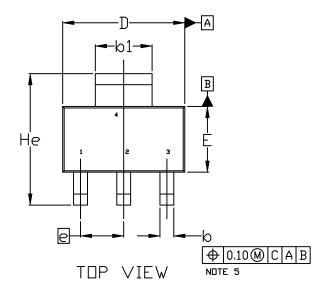
ORDERING INFORMATION

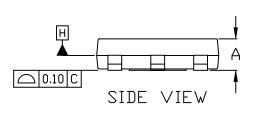
Device	Package	Shipping [†]
NCV8403ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8403ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8403BDTRKG	DPAK (Pb-Free)	2500 / Tape & Reel

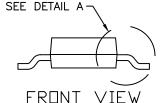
DISCONTINUED (Note 7)

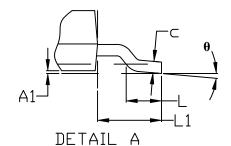
NCV8403ADTRKG	DPAK	2500 / Tape & Reel
	(Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

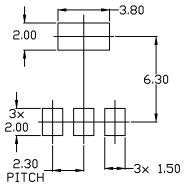

^{7.} **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.






SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



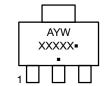
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS		
DIM	MIN.	N□M.	MAX.
Α	1.50	1.63	1.75
A1	0.02	0.06	0.10
Ø	0.60	0.75	0.89
b1	2.90	3.06	3.20
U	0.24	0.29	0.35
D	6.30	6.50	6.70
Е	3.30	3.50	3.70
е	2.30 BSC		
L	0.20		
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
θ	0°		10°

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

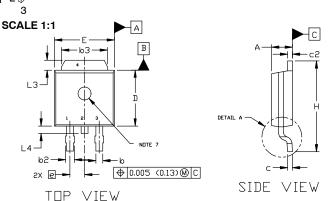
Y = Year W = Work Week

XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location) *This information is generic. Please refer to

device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

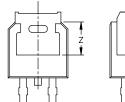

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED of the control of	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

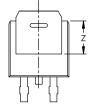
onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DPAK (SINGLE GAUGE)

CASE 369C ISSUE G

DATE 31 MAY 2023

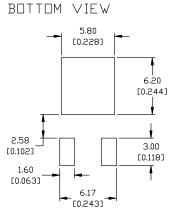

- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.

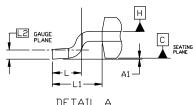

 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUPE.

- OPTIONAL MOLD FEATURE.

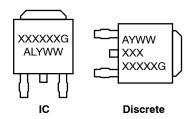
Ψ

DIM	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
C	0.018	0.024	0.46	0.61
c 2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040	-	1.01
Z	0.155		3.93	





ALTERNATE


CONSTRUCTIONS

DETAIL A CW ROTATED 90°

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

0 0	2. CATHODE 2 3. ANODE 3	E 4: STYLE 5: 1. CATHODE PIN 1. GATE 2. ANODE 2. ANODE 3. GATE 3. CATHODE 4. ANODE 4. ANODE
-----	----------------------------	---

STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE 3 FMITTER 3 RESISTOR ADJUST 3 GATE 4. COLLECTOR 4. CATHODE 4. ANODE 4. CATHODE

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales