Intelligent Power Module (IPM) 650 V, 50 A ## NFAM5065L4BBA #### **General Description** The NFAM5065L4BBA is a fully-integrated inverter power module consisting of an independent High side gate driver, LVIC, six IGBT's and a temperature sensor (VTS), suitable for driving permanent magnet synchronous (PMSM) motors, brushless DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a three-phase bridge with separate emitter connections for the lower legs for maximum flexibility in the choice of control algorithm. The power stage has under voltage lockout protection (UVP). Internal boost diodes are provided for high side gate boost drive. #### **Features** - Three-phase 650 V, 50 A IGBT Module with Independent Drivers - Active Logic Interface - Built-in Under -Voltage Protection (UVP) - Integrated Bootstrap Diodes and Resistors - Separate Low-side IGBT Emitter Connections for Individual Current Sensing of Each Phase - Temperature Sensor (VTS) - UL1557 Certified (File No.339285) - This Device is Pb -Free and RoHS Compliant #### **Applications** - Industrial Drives - Industrial Pumps - · Industrial Fans - Industrial Automation Figure 1. Application Schematic DIP39, 54.5x31.0 EP -2 CASE MODGX #### **MARKING DIAGRAM** Device marking is on package top side NFAM5065L4BBA = Specific Device Code ZZZ = Assembly Lot Code A = Assembly Location T = Test Location Y = Year WW = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping | |---------------|-----------------------------------|----------------| | NFAM5065L4BBA | DIP39
54.5 x 31.0
(Pb-Free) | 90 Units / Box | Figure 2. Application Schematic - Adjustable Option Figure 3. Equivalent Block Diagram #### PIN FUNCTION DESCRIPTION | Pin | Name | Description | |------|---------|--| | 1 | VS(U) | High -Side Bias Voltage GND for U phase IGBT Driving | | (2) | - | Dummy | | 3 | VB(U) | High -Side Bias Voltage for U phase IGBT Driving | | 4 | VDD(UH) | High -Side Bias Voltage for U phase IC | | (5) | - | Dummy | | 6 | HIN(U) | Signal Input for High -Side U Phase | | 7 | VS(V) | High -Side Bias Voltage GND for V phase IGBT Driving | | (8) | - | Dummy | | 9 | VB(V) | High -Side Bias Voltage for V phase IGBT Driving | | 10 | VDD(VH) | High -Side Bias Voltage for V phase IC | | (11) | - | Dummy | | 12 | HIN(V) | Signal Input for High -Side V Phase | | 13 | VS(W) | High -Side Bias Voltage GND for W phase IGBT Driving | | (14) | - | Dummy | | 15 | VB(W) | High -Side Bias Voltage for W phase IGBT Driving | | 16 | VDD(WH) | High -Side Bias Voltage for W phase IC | | (17) | - | Dummy | | 18 | HIN(W) | Signal Input for High -Side W Phase | | (19) | - | Dummy | | 20 | VTS | Voltage Output for LVIC Temperature Sensing Unit | | 21 | LIN(U) | Signal Input for Low -Side U Phase | | 22 | LIN(V) | Signal Input for Low -Side V Phase | | 23 | LIN(W) | Signal Input for Low -Side W Phase | | 24 | VFO | Fault Output | | 25 | CFOD | Capacitor for Fault Output Duration Selection | | 26 | CIN | Input for Current Protection | | 27 | VSS | Low -Side Common Supply Ground | | 28 | VDD(L) | Low -Side Bias Voltage for IC and IGBTs Driving | | (29) | - | Dummy | | (30) | - | Dummy | | 31 | NW | Negative DC -Link Input for U Phase | | 32 | NV | Negative DC -Link Input for V Phase | | 33 | NU | Negative DC -Link Input for W Phase | | 34 | W | Output for U Phase | | 35 | V | Output for V Phase | | 36 | U | Output for W Phase | | 37 | Р | Positive DC -Link Input | | 38 | N.C | No Connection | | (39) | - | Dummy | Pins of () are the dummy for internal connection. These pins should be no connection. #### ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C) (Note 2) | Symbol | Rating | Conditions | Value | Unit | |--|---|---|-------------|------| | VPN | Supply Voltage | P –NU, NV, NW | 450 | V | | VPN(surge) | Supply Voltage (Surge) | P -NU, NV, NW (Note 3) | 550 | V | | VPN(PROT) | $ \begin{array}{lll} \text{VPN(PROT)} & \text{Self Protection Supply Voltage Limit} \\ & \text{(Short -Circuit Protection Capability)} & \text{VDD} = \text{VBS} = 13.5 \text{ V} \sim 16.5 \text{ V}, \text{Tj} = 150 \text{ °C}, \\ & \text{Vces} < 650 \text{ V}, \text{Non -repetitive}, < 2 \mu\text{S} \\ \end{array} $ | | 400 | V | | Vces | Collector -emitter voltage | | 650 | V | | VRRM | Maximum Repetitive
Reverse Voltage | | 650 | V | | ±lc | Each IGBT Collector Current | | ±50 | Α | | ±lcp | Each IGBT Collector
Current (Peak) | Under 1 ms Pulse Width | ±100 | Α | | VDD | Control Supply Voltage | VDD(UH,VH,WH), VDD(L)-VSS | -0.3 to 20 | V | | VBS High -Side VB(U)-VS(U VB(W)-VS(V VB(W)-VS(V)-VS(V VB(W)-VS(V VB(W)-VS(V VB(W)-VS(V VB(W)-VS(V VB(W)-VS(V VB(W)-VS(V VB(W)-VS(V VB(W)-VS(V)-VS(V VB(W)-VS(V)-VS(V)-VS(V VB(W) | | VB(U)-VS(U), VB(V)-VS(V),
VB(W)-VS(W) | -0.3 to 20 | ٧ | | VIN | Input Signal Voltage | HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),
LIN(W)–VSS | -0.3 to VDD | V | | VFO | Fault Output Supply Voltage | VFO-VSS | -0.3 to VDD | V | | IFO | Fault Output Current | Sink Current at VFO pin | 2 | mA | | VCIN | Current Sensing
Input Voltage | CIN-VSS | -0.3 to VDD | ٧ | | Pc | Corrector Dissipation | Per One Chip | 125 | W | | Tj | Operating Junction Temperature | | -40 to +150 | °C | | Tstg | Storage temperature | | -40 to +125 | °C | | Tc | Module Case Operation Temperature | | -40 to +125 | °C | | Viso | Isolation voltage | 60 Hz, Sinusoidal, AC 1 minute,
Connection Pins to Heat Sink Plate | 2500 | Vrms | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe #### THERMAL CHARACTERISTICS | Symbol | Rating | Conditions | Min | Тур | Max | Unit | |-----------|------------|-------------------------------------|-----|-----|-----|------| | Rth(j-c)Q | | Inverter IGBT Part (per 1/6 module) | - | - | 1.0 | °C/W | | Rth(j-c)F | Resistance | Inverter FWD Part (per 1/6 module) | - | _ | 1.7 | °C/W | ^{4.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters. Operating parameters. ^{3.} This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Rating | Cond | itions | Min | Тур | Max | Unit | |-------------------------|--------------------------------|---|---------------|------|-----|------|------| | VPN | Supply Voltage | P-NU, NV, NW | | _ | 300 | 400 | V | | VDD | Gate Driver Supply | VDD(UH,VH,WH), | VDD(L)-VSS | 13.5 | 15 | 16.5 | V | | VBS | - Voltages | VB(U)-VS(U), VB(
VB(W)-VS(W) | (V)-VS(V), | 13.0 | 15 | 18.5 | V | | dVDD / dt,
dVBS / dt | Supply Voltage Variation | | | -1 | - | 1 | V/μs | | fPWM | PWM Frequency | | | 1 | - | 20 | kHz | | DT | Dead Time | Turn-off to Turn-on (external) | | 1.5 | - | - | μs | | lo | Allowable r.m.s. Current | VPN = 300 V,
VDD = 15 V,
P.F. = 0.8 | fPWM = 5 kHz | _ | - | 30.0 | Arms | | | | Tc ≤ 125 °C,
Tj ≤ 150 °C
(Note 5) | fPWM = 15 kHz | _ | - | 21.2 | | | PWIN (on) | Allowable Input Pulse
Width | 200 V ≤ VPN ≤ 400 V
13.5 V ≤ VDD ≤ 16.5 V
13.0 V ≤ VBS ≤ 18.5 V
-20 °C ≤ Tc ≤ 100 °C | | 1.0 | _ | _ | μs | | PWIN (off) | | | | 1.5 | _ | _ | | | | Package Mounting Torque | M3 type screw | | 0.6 | 0.7 | 0.9 | Nm | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 5. Allowable r.m.s current depends on the actual conditions. ### **ELECTRICAL CHARACTERISTICS** (Tc = 25 °C, VDD = 15 V, VBS = 15 V, unless otherwise noted) (Note 7) | Symbol | Paramet | er | Test Conditions | Min | Тур | Max | Unit | |-------------|--------------------------------|---|--|------|------|------|------| | INVERTER SE | CTION | | | | | | | | Ices | Collector-Emitter L | eakage | Vce = Vces, Tj = 25 °C | - | - | 1 | mA | | | Current | | Vce = Vces, Tj = 150 °C | - | - | 10 | mA | | VCE(sat) | Collector-Emitter S
Voltage | aturation | VDD = VBS = 15 V, IN = 5 V
Ic = 50 A, Tj = 25 °C | - | 1.65 | 2.30 | V | | | | | VDD = VBS = 15 V, IN = 5 V
Ic = 50 A, Tj = 150 °C | - | 1.85 | - | V | | VF | VF FWDi Forward Voltage | age | IN = 0 V, Ic = 50 A, Tj = 25 °C | - | 2.00 | 2.40 | V | | | | | IN = 0 V, Ic = 50 A, Tj = 150 °C | - | 2.00 | - | V | | ton | Switching Times | ching Times High Side | VPN = 300 V, VDD(H) = VDD(L) = 15 V
Ic = 50 A, Tj = 25 °C, IN = 0 \Leftrightarrow 5 V
Inductive Load | 0.90 | 1.50 | 2.10 | μs | | tc(on) | | | | - | 0.40 | 0.70 | μs | | toff | | | | - | 1.80 | 2.40 | μs | | tc(off) | | | | - | 0.25 | 0.75 | μs | | trr | | | | - | 0.25 | - | μs | | ton | | Low Side | VPN = 300 V, VDD(H) = VDD(L) = 15 V | 0.90 | 1.50 | 2.10 | μs | | tc(on) | | Ic = 50 A, Tj = 25 °C, IN = 0 ↔ 5 V
Inductive Load | - | 0.30 | 0.60 | μs | | | toff | | | - | 1.70 | 2.30 | μs | | | tc(off) | 7 | | | - | 0.25 | 0.75 | μs | | trr | | | | - | 0.25 | | μs | ^{6.} Flatness tolerance of the heatsink should be within –50 μ m to +100 μ m. ELECTRICAL CHARACTERISTICS (Tc = 25 °C, VDD = 15 V, VBS = 15 V, unless otherwise noted) (Note 7) (continued) | Symbol | Parameter | Test Conditi | Test Conditions | | Тур | Max | Unit | |------------|---|---|--|-------|-------|-------|------| | RIVER SECT | TION | <u>'</u> | | | | | | | IQDDH | Quiescent VDD Supply
Current | VDD(UH,VH,WH) = 15 V,
HIN(U,V,W) = 0 V | VDD(UH)-VSS
VDD(VH)-VSS
VDD(WH)-VSS | _ | - | 0.30 | mA | | IQDDL | | VDD(L) = 15 V,
LIN(U,V,W) = 0 V | VDD(L)-VSS | - | - | 3.50 | mA | | IPDDH | Operating VDD Supply
Current | VDD(UH,VH,WH) = 15 V,
fPWM = 20 kHz, Duty =
50%, Applied to one PWM
Signal Input for High-Side | VDD(UH)-VSS
VDD(VH)-VSS
VDD(WH)-VSS | - | - | 0.40 | mA | | IPDDL | | VDD(L) = 15 V,
fPWM = 20 kHz, Duty =
50%, Applied to one PWM
Signal Input for Low-Side | VDD(L)-VSS | - | - | 6.00 | mA | | IQBS | Quiescent VBS Supply
Current | VBS = 15 V,
HIN(U,V,W) = 0 V | VB(U)-VS(U)
VB(V)-VS(V)
VB(W)-VS(W) | - | - | 0.30 | mA | | IPBS | Operating VBS Supply
Current | VDD = VBS = 15 V,
fPWM = 20 kHz, Duty =
50%, Applied to one PWM
Signal Input for High-Side | VB(U)-VS(U)
VB(V)-VS(V)
VB(W)-VS(W) | - | - | 5.00 | mA | | VIN(ON) | ON Threshold Voltage | HIN(U,V,W)-VSS, LIN(U,V,W)-VSS | | - | _ | 2.6 | V | | VIN(OFF) | OFF Threshold Voltage | | | | - | - | V | | VCIN(ref) | Short Circuit Trip Level | VDD = 15 V, CIN-VSS | | 0.46 | 0.48 | 0.50 | V | | UVDDD | Supply Circuit | Detection Level | | 10.3 | - | 12.5 | V | | UVDDR | Under-Voltage Protection | Reset Level | | 10.8 | - | 13.0 | V | | UVBSD | 1 | Detection Level | | 10.0 | - | 12.0 | V | | UVBSR | | Reset Level | | 10.5 | - | 12.5 | V | | VTS | Voltage Output for LVIC
Temperature Sensing Unit | VTS-VSS = 10 nF, Temp. = 2 | 25 °C (Note 10) | 1.145 | 1.250 | 1.380 | V | | VFOH | Fault Output Voltage | VDD = 0 V, CIN = 0 V,
VFO Circuit: 10 k Ω to 5 V Pu | VDD = 0 V, CIN = 0 V,
VFO Circuit: 10 kΩ to 5 V Pull-up | | - | - | V | | VFOL | | VDD = 0 V, CIN = 1 V,
VFO Circuit: 10 kΩ to 5 V Pull-up | | - | - | 0.95 | V | | tFOD | Fault-Output Pulse Width | CFOD = 22 nF | | 1.6 | 2.4 | - | ms | | OOTSTRAP | SECTION | | | | | | | | VF | Bootstrap Diode Forward
Voltage | If = 0.1 A | If = 0.1 A | | 4.6 | 5.8 | V | | RBOOT | Built-in Limiting Resistance | | | 30 | 38 | 46 | Ω | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ^{7.} Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at Tj = Ta = 25 °C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. ^{8.} The fault -out pulse width t_{FOD} depends on the capacitance value of CFÓD according to the following approximate equation: tFOD = 0.11 × 10⁶ × CFOD (s). ^{9.} Values based on design and/or characterization. ^{10.}VTS is only for sensing temperature of LVIC and can not shutdown IGBTs automatically. To get linear VTS output voltage at low temperature below room temperature, 5 k Ω pull down resistor should be inserted between VTS and VSS. Figure 4. Temperature of LVIC versus VTS Characteristics #### **REVISION HISTORY** | Revision | Description of Changes | Date | |----------|--|----------| | 2 | Updated MIN limit spec of VTS item in the Electrical Characteristics Table (DRIVER SECTION) on page 7. | 7/1/2025 | This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates. #### DIP39, 54.50x31.00x5.60, 1.78P EP-2 CASE MODGX **ISSUE B** #### **DATE 05 MAY 2025** #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS - DIMENSION b and c APPLY TO THE PLATED LEADS AND ARE MEASURED BETWEEN 1.00 AND 2.00 FROM THE LEAD TIP POSITION OF THE LEAD IS DETERMINED AT THE BASE OF THE 3. - LEAD WHERE IT EXITS THE PACKAGE BODY - AREA FOR 2D BAR CODE - SHORTENED/CUT PINS ARE 2,5,8,11,14,17,19,29, 30 AND 39 - E SIDE FLASH | DIMENSIONS D AND | _ E L | וו וטאוטכ | NCLUDE | ILL | |------------------|-------|-----------|---------|-----| | PROTRUSION WHICH | IS ~(| 0.12 FOR | EACH SI | DΕ | | | MILLIMETERS | | | | | |-----|----------------|-----------|-------|--|--| | DIM | MIN. | NOM. | MAX. | | | | E | 30.90 | 31.00 | 31,10 | | | | E1 | | 33.50 REF | | | | | E2 | | 26.14 REF | | | | | E3 | | 12.35 REF | | | | | E4 | | 8.00 REF | | | | | E5 | 35.40 | 35.90 | 36.40 | | | | е | | 2.81 REF | | | | | e1 | | 7.62 BSC | | | | | e2 | 6.60 BSC | | | | | | e3 | 3.30 BSC | | | | | | e4 | 5.35 REF | | | | | | e5 | 6.10 BSC | | | | | | e6 | | 8.02 REF | | | | | e7 | | 1.78 BSC | | | | | e8 | | 10.35 REF | | | | | e9 | | 10.25 REF | | | | | e10 | | 3.60 REF | | | | | e11 | | 1.00 REF | | | | | e12 | 0.89 BSC | | | | | | F | 3.20 3.30 3.40 | | | | | | F1 | 1.40 | 1.50 | 1.60 | | | | L | 5.60 REF | | | | | | L1 | | 0.10 REF | | | | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Lot Code 777 ΑT = Assembly & Test Location = Year WW = Work Week *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " • ", may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON05290H **DESCRIPTION:** DIP39, 54.50x31.00x5.60, 1.78P EP-2 PAGE 1 OF 1 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales