IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications, offering both low on-state voltage and minimal switching loss. The IGBT is well suited for resonant or soft switching applications. Incorporated into the device is a rugged co-packaged free wheeling diode with a low forward voltage.

Features

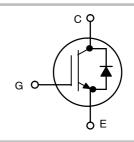
- Low Saturation Voltage using Trench with Fieldstop Technology
- Low Switching Loss Reduces System Power Dissipation
- Low Gate Charge
- 5 µs Short Circuit Capability
- These are Pb-Free Devices

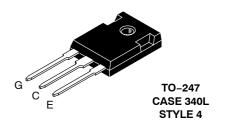
Typical Applications

- Inverter Welding Machines
- Microwave Ovens
- Industrial Switching
- Motor Control Inverter

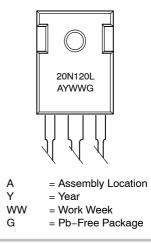
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-emitter voltage	V _{CES}	1200	V	
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _C	40 20	A	
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	200	A	
Diode forward current @ Tc = 25°C @ Tc = 100°C	l _F	40 20	A	
Diode pulsed current, T_{pulse} limited by T_{Jmax}	I _{FM}	200	A	
Gate-emitter voltage	V _{GE}	±20	V	
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	192 77	W	
Short Circuit Withstand Time V_{GE} = 15 V, V_{CE} = 600 V, T_J \leq 150°C	T _{SC}	5	μs	
Operating junction temperature range	ТJ	–55 to +150	°C	
Storage temperature range	T _{stg}	–55 to +150	°C	
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C	


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

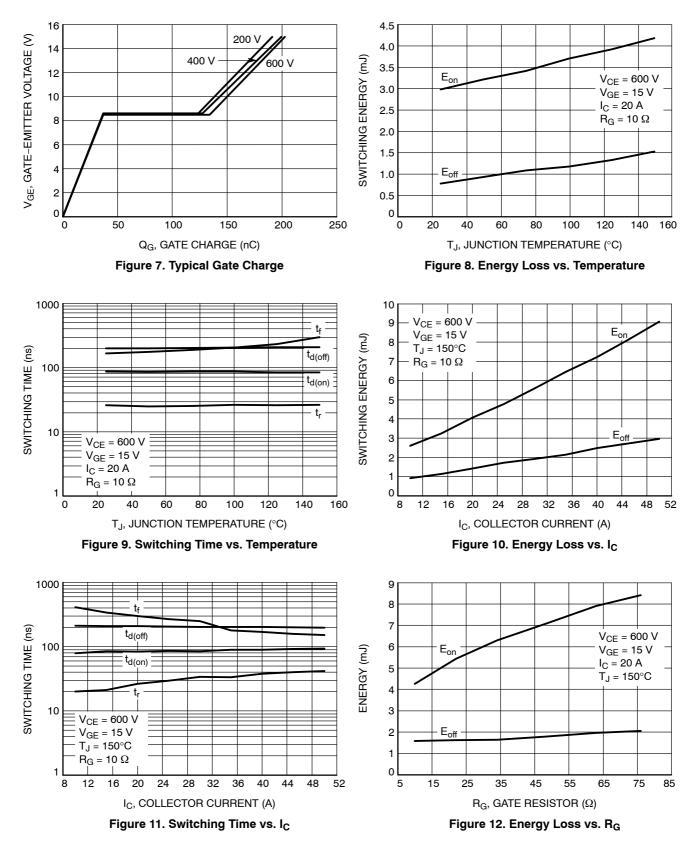

http://onsemi.com

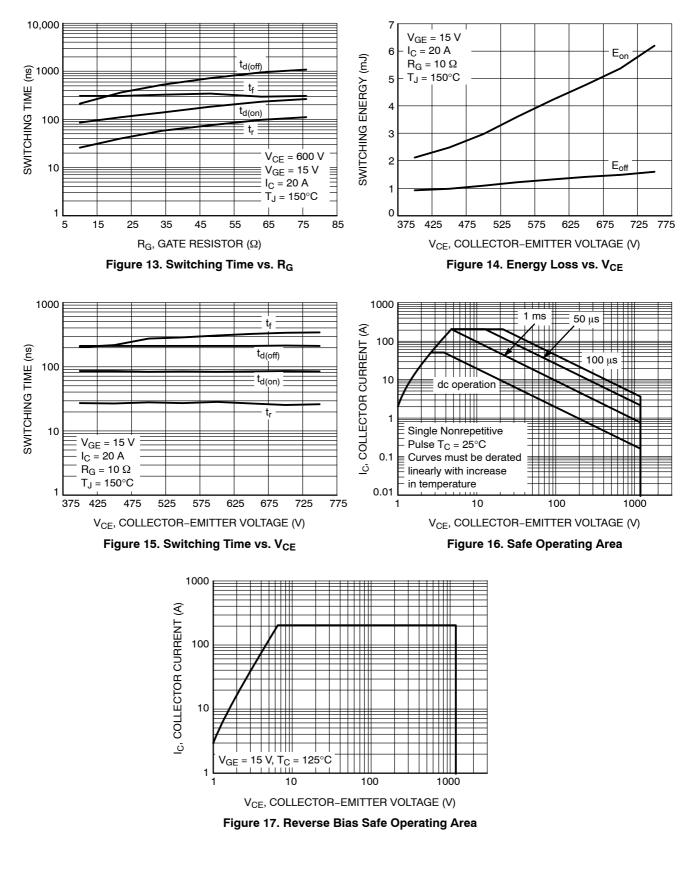
20 A, 1200 V V_{CEsat} = 1.80 V E_{off} = 0.7 mJ

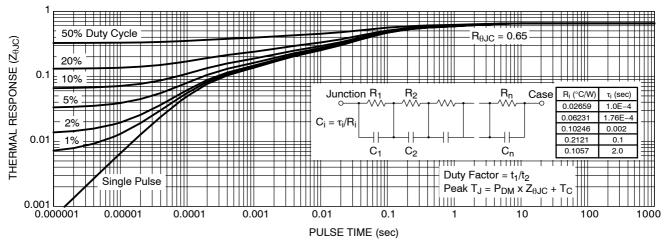
MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
NGTB20N120LWG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ ext{ heta}JC}$	0.65	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ ext{ heta}JC}$	1.5	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	•					
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	1200	-	-	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 20 A V _{GE} = 15 V, I _C = 20 A, T _J = 150°C	V _{CEsat}	-	1.80 2.0	2.2 _	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 250 \ \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 V, V_{CE} = 1200 V$ $V_{GE} = 0 V, V_{CE} = 1200 V, T_{J} = 150^{\circ}C$	I _{CES}		-	0.5 2.0	mA
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	_	-	100	nA
DYNAMIC CHARACTERISTIC	·					
Input capacitance		C _{ies}	_	4700	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	155	-	
Reverse transfer capacitance	1	C _{res}	-	100	-	
Gate charge total		Qg		200		nC
Gate to emitter charge	V _{CE} = 600 V, I _C = 20 A, V _{GE} = 15 V	Q _{ge}		36		
Gate to collector charge	1	Q _{gc}		98		
SWITCHING CHARACTERISTIC, INDUC	FIVE LOAD					
Turn-on delay time		t _{d(on)}		86		ns
Rise time	1	t _r		26		
Turn-off delay time	T _J = 25°C V _{CC} = 600 V, I _C = 20 A	t _{d(off)}		235		
Fall time	$R_{g} = 10 \Omega$ $V_{GE} = 0 V/15 V$	t _f		180		
Turn–on switching loss		E _{on}		3.1		mJ
Turn–off switching loss]	E _{off}		0.7		
Turn-on delay time		t _{d(on)}		84		ns
Rise time]	t _r		26		
Turn-off delay time	$T_{J} = 125^{\circ}C$ V _{CC} = 600 V, I _C = 20 A	t _{d(off)}		235		
Fall time	$R_g = 10 \Omega$ V _{GE} = 0 V/ 15 V	t _f		250		
Turn–on switching loss		E _{on}		3.9		mJ
Turn–off switching loss		E _{off}		1.3		
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 20 A V _{GE} = 0 V, I _F = 20 A, T _J = 150°C	V _F		1.55 1.65	1.75	V

120 120 V_{GE} = 20 to 13 V V_{GE} = 20 to 11 V T_J = 25[°]C $T_J = 150^{\circ}C$ IC, COLLECTOR CURRENT (A) Ic, COLLECTOR CURRENT (A) 100 100 v 10 V 80 80 10 V 60 60 9 V 9 V 40 40 8 V 20 20 8 V 7 V 7 V 0 0 2 З 5 0 3 5 0 4 2 4 V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) Figure 2. Output Characteristics **Figure 1. Output Characteristics** 120 120 V_{GE} = 20 to 13 V Ic, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 100 100 11 V 80 80 10 V $T_J = -40^{\circ}C$ 60 60 40 40 9 V T_J = 150°C 20 20 T_I = 25°C 8 V 0 0 2 3 0 5 15 Δ 10 0 5 V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) V_{GE}, GATE-EMITTER VOLTAGE (V) **Figure 3. Output Characteristics Figure 4. Typical Transfer Characteristics** 10,000 120 Cies F, FORWARD CURRENT (A) 100 T_J = 125°C $T_J = 25^{\circ}C$ C, CAPACITANCE (pF) 1000 80 60 100 40 Coes 20 Cres 10 0 100 25 50 75 125 175 200 0.5 2.0 2.5 3.0 0 150 0 1.0 1.5 V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) V_F, FORWARD VOLTAGE (V) Figure 5. Typical Capacitance Figure 6. Diode Forward Characteristics

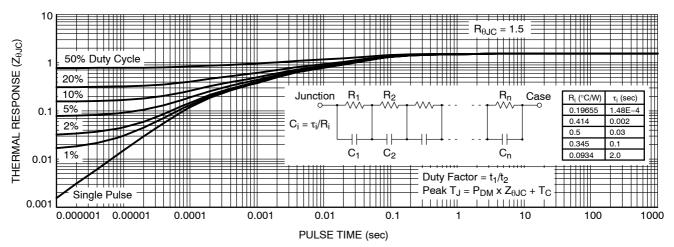


Figure 19. Diode Transient Thermal Impedance

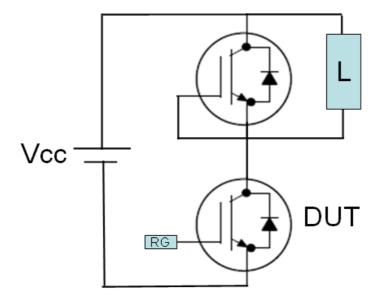
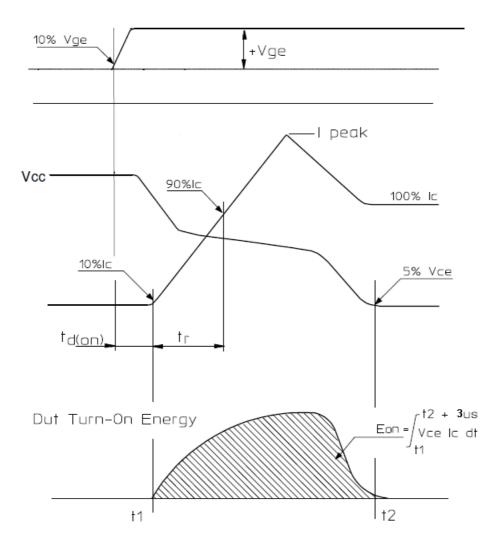



Figure 20. Test Circuit for Switching Characteristics

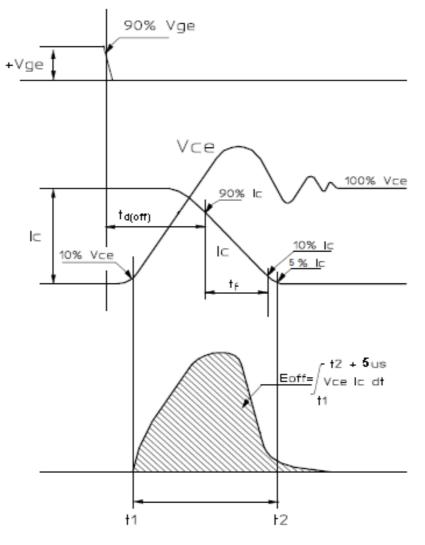
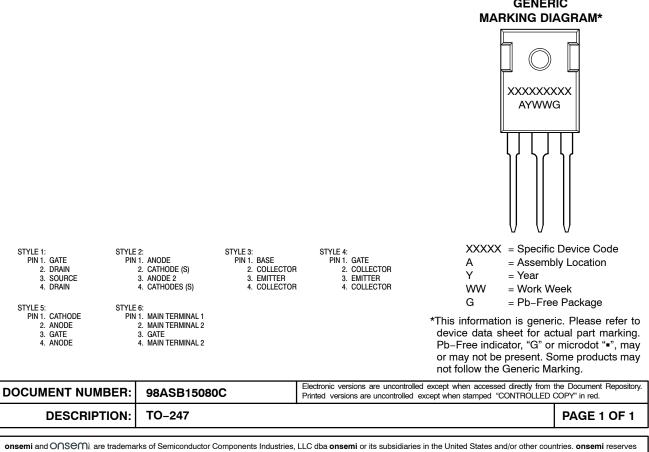


Figure 22. Definition of Turn Off Waveform

semi

TO-247 CASE 340L ISSUE G G SCALE 1:1 Т В EATING -Ν Α 7 . ർറ ∲Ø0.63 (0.025)@|T|B@ Р Ý 2X F G ·H ЗХ D ♦ 0.25 (0.010) W Y AS


DATE 06 OCT 2021

NOTES

- DIMENSIONING AND TOLERANCING PER ASME 1. Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
A	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
к	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC		0.242 BSC	
W	2.87	3.12	0.113	0.123

GENERIC

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>