MOSFET – Single, P-Channel, Small Signal, Gate Zener, SC-75, SC-89

-20 V, -760 mA

Features

- Low R_{DS(on)} for Higher Efficiency and Longer Battery Life
- Small Outline Package (1.6 x 1.6 mm)
- SC-75 Standard Gullwing Package
- ESD Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Side Load Switch
- DC-DC Conversion
- Small Drive Circuits
- Battery Operated Systems such as Cell Phones, PDAs, Digital Cameras, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

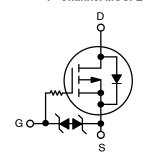
Parameter	Symbol	Value	Units	
Drain-to-Source Voltage	V_{DSS}	-20	V	
Gate-to-Source Voltage		V _{GS}	±6.0	V
Continuous Drain Current (Note 1)	Steady State	I _D	-760	mA
Power Dissipation (Note 1) SC-75 SC-89	Steady State	P _D	301 313	mW
Pulsed Drain Current tp =10 μs		I _{DM}	±1000	mA
Operating Junction and Storage	T _J , T _{STG}	–55 to 150	°C	
Continuous Source Current (Bo	I _S	-250	mA	
Lead Temperature for Soldering Purposes (1/8 in from case for 10 s)		T _L	260	°C
Gate-to-Source ESD Rating - (Human Body Model, Method 3015)		ESD	1800	V

THERMAL RESISTANCE RATINGS

Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$		°C/W
SC-75		415	
SC-89		400	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
	0.26 Ω @ -4.5 V		
-20 V	0.35 Ω @ -2.5 V	–760 mA	
	0.49 Ω @ -1.8 V		

P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

CASE 463C

xx = Device Code
M = Date Code*
• Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

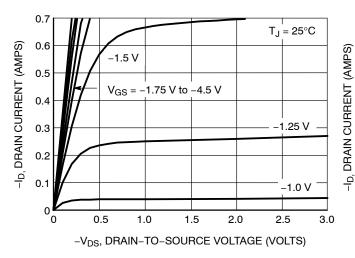
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter Symbol		Test Condition	Min	in Typ	Max	Unit	
OFF CHARACTERISTICS			-	-			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20			V	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$		-1.0	-100	nA	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$		±1.0	±10	μΑ	
ON CHARACTERISTICS (Note 2)	•		•	•			
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.45		-1.2	V	
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -350 \text{ mA}$		0.26	0.36	Ω	
		$V_{GS} = -2.5 \text{ V}, I_D = -300 \text{ mA}$		0.35	0.45		
		$V_{GS} = -1.8 \text{ V}, I_D = -150 \text{ mA}$		0.49	1.0		
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V}, I_D = -250 \text{ mA}$		0.4		S	
CHARGES AND CAPACITANCES	•		•	1			
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -5.0 \text{ V}$		156		pF	
Output Capacitance	C _{OSS}	$V_{DS} = -5.0 \text{ V}$		28			
Reverse Transfer Capacitance	C _{RSS}			18			
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$		2.1		nC	
Threshold Gate Charge	Q _{G(TH)}	I _D = -0.3 A		0.125		1	
Gate-to-Source Charge	Q _{GS}			0.325			
Gate-to-Drain Charge	Q_{GD}			0.5			
SWITCHING CHARACTERISTICS (Note	3)			•			
Turn-On Delay Time	td _(ON)	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$		8.0		ns	
Rise Time	t _r	I_D = -200 mA, R_G = 10 Ω		8.2			
Turn-Off Delay Time	td _(OFF)			29			
Fall Time	t _f			20.4			
DRAIN-SOURCE DIODE CHARACTER		1					
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V, } I_{S} = -250 \text{ mA}$		-0.72	-1.1	V	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTA4151PT1G	TN	SC-75 (Pb-Free)	3000 / Tape & Reel
NTE4151PT1G	ТМ	SC-89 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{3.} Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

0.6 $V_{DS} \ge -10 \text{ V}$ 0.5 0.4 0.3 0.2 T_J = 125°C T_J = 25°C 0.1 $T_J = -55^{\circ}C$ 0 0 0.4 8.0 1.2 1.6 2.0

-V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

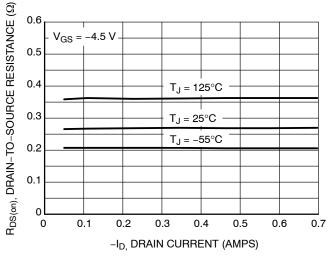


Figure 2. Transfer Characteristics

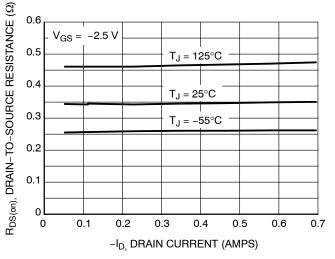


Figure 3. On-Resistance vs. Drain Current and Temperature

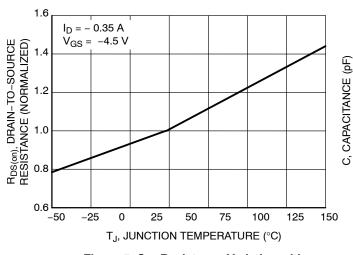


Figure 4. On–Resistance vs. Drain Current and Temperature

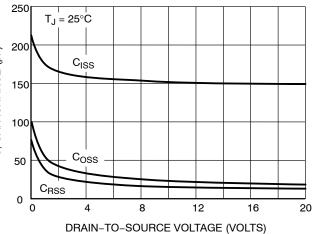
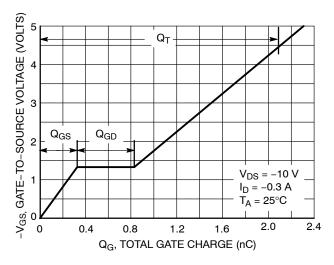



Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

TYPICAL ELECTRICAL CHARACTERISTICS

0.7 V_{GS} = 0 V 0.5 0.5 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.5 T_J = 125°C T_J = 25°C -V_{SD}, SOURCE-TO-DRAIN VOLTAGE (VOLTS)

Figure 7. Gate-to-Source Voltage vs. Total Gate Charge

Figure 8. Diode Forward Voltage vs. Current

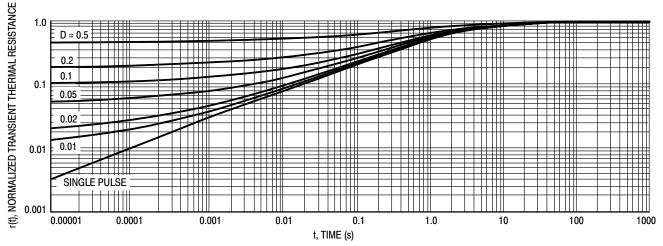
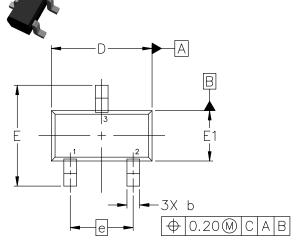
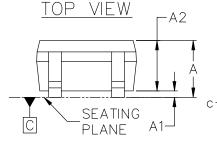


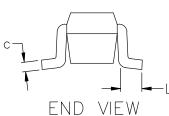
Figure 9. Normalized Thermal Response

SC75-3 1.60x0.80x0.80, 1.00P

CASE 463 ISSUE H


DATE 01 FEB 2024


NOTES:


- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.

DIM	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
А	0.70	0.80	0.90	
A1	0.00	0.05	0.10	
A2	0.80 REF.			
b	0.15	0.20	0.30	
С	0.10	0.15	0.25	
D	1.55	1.60	1.65	
Е	1.50	1.60	1.70	
E1	0.70	0.80	0.90	
е	1.00 BSC			
L	0.10	0.15	0.20	

-0.356

SIDE VIEW

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

Μ = Date Code

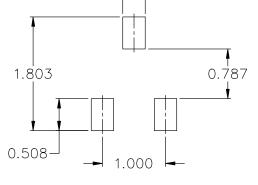
= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	
PIN 1. BASE	
O EMITTED	

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE

3. COLLECTOR


STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

STYLE 3: PIN 1. ANODE 2. ANODE 3 CATHODE

RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY

AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:

98ASB15184C

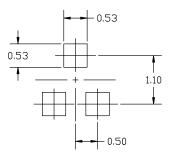
Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

SC75-3 1.60x0.80x0.80, 1.00P

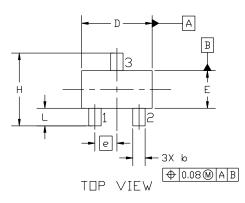
PAGE 1 OF 1

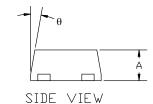
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

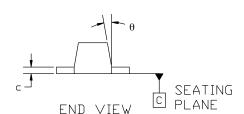

SC-89 3-LEAD, 1.60x0.85x0.70, 0.50P CASE 463C ISSUE D

DATE 20 FEB 2024

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSIONS: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.


DIM	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.60	0.70	0.80	
b	0.23	0,28	0.33	
C	0.10	0.15	0.20	
D	1,50	1.60	1.70	
E	0.75	0.85	0.95	
е	0.50 BSC			
Н	1,50	1.60	1.70	
L	0.30	0.40	0.50	
θ			10°	



RECOMMENDED MOUNTING FOOTPRINT

* FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE

DESCRIPTION	SC-89 3-LEAD. 1.60x0.85x0.70. 0.50P		PAGE 1 OF 1
DOCUMENT NUMBER:	98AON11472D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales