MOSFET – Power, Single, N-Channel, SO-8 FL 30 V, 171 A

Features

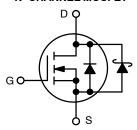
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Includes Schottky Diode
- Optimized Gate Charge to Minimize Switching Losses
- These are Pb-Free Device

Applications

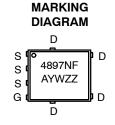
- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Par	ameter		Symbol	Value	Unit
Drain-to-Source Vo	ltage		V_{DSS}	30	V
Gate-to-Source Vol	tage		V_{GS}	±20	V
Continuous Drain Current R _{θJA}		$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	Ι _D	29 21	Α
(Note 1)					
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.74	W
Continuous Drain Current R _{θJA} ≤		T _A = 25°C	I _D	47	Α
10 sec		T _A = 85°C		34	
Power Dissipation $R_{\theta JA,} t \leq 10 \text{ sec}$	Steady	T _A = 25°C	P _D	7.3	W
Continuous Drain Current R _{θJA}	State	T _A = 25°C	Ι _D	17	Α
(Note 2)		T _A = 85°C		12	
Power Dissipation R _{θJA} (Note 2)		T _A = 25°C	P _D	0.95	W
Continuous Drain Current R _{θJC}		T _C = 25°C	Ι _D	171	Α
(Note 1)		T _C = 85°C		123	
Power Dissipation R _{θJC} (Note 1)		T _C = 25°C	P _D	96.2	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	288	Α
Current limited by pa	ackage	T _A = 25°C	I _{Dmaxpkg}	100	Α
Operating Junction a Temperature	Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to +150	°C
Source Current (Boo	dy Diode)		I _S	120	Α
Drain to Source dV/	Drain to Source dV/dt			6	V/ns



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	2.0 mΩ @ 10 V	474 ^
30 V	3.0 mΩ @ 4.5 V	171 A

N-CHANNEL MOSFET

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4897NFT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NTMFS4897NFT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Value	Unit
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 V, V_{GS} = 10 V, I_L = 50 A_{pk} , L = 0.3 mH, R_G = 25 Ω)	EAS	375	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

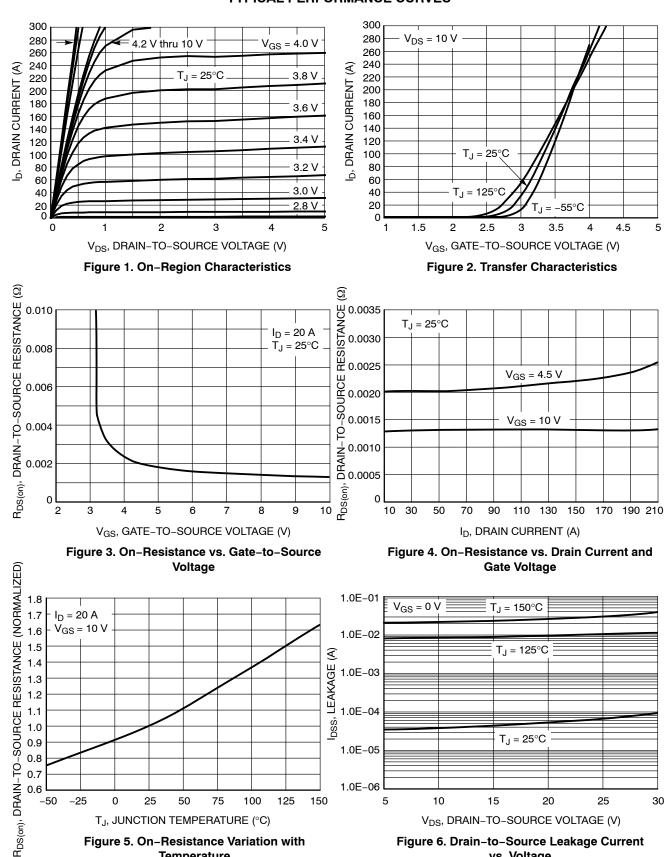
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.3	
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	45.7	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	132.1	*C/VV
Junction-to-Ambient - t ≤ 10 sec	$R_{ heta JA}$	17.2	

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T.I = 25°C unless otherwise specified)

Parameter	Symbol	Test Cond	lition	Min	Тур	Max	Unit
OFF CHARACTERISTICS					I	I	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1.0 mA		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				28.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25 °C		60	500	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 1.0 mA	1.5	2.0	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 22 A		1.3	2.0	
			I _D = 20 A		1.3		mΩ
		V _{GS} = 4.5 V	I _D = 20 A		2.0	3.0	11152
			I _D = 18 A		2.0		
Forward Transconductance	9FS	V _{DS} = 15 V, I	_D = 15 A		90		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				5660		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			1150		pF
Reverse Transfer Capacitance	C _{RSS}	193 - 1,1 - 1 - 1,1			495		
Total Gate Charge	Q _{G(TOT)}				40.2		
Threshold Gate Charge	Q _{G(TH)}	\/ 45\/\/	15 \/. L 00 A		6.4		nC
Gate-to-Source Charge	Q_{GS}	V_{GS} = 4.5 V, V_{DS} =	15 V; ID = 23 A		15.3		
Gate-to-Drain Charge	Q_{GD}	1			13.4		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V I _D = 23			83.6		nC
SWITCHING CHARACTERISTICS (Note 4)							
Turn-On Delay Time	t _{d(ON)}				26		
Rise Time	t _r	V _{GS} = 4.5 V, V _r	_{os} = 15 V,		24		1
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 4.5 \text{ V, } V_{I}$ $I_{D} = 15 \text{ A, } R_{G}$	$= 3.0 \Omega$		36		ns
Fall Time	t _f				13		1


- 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 4. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

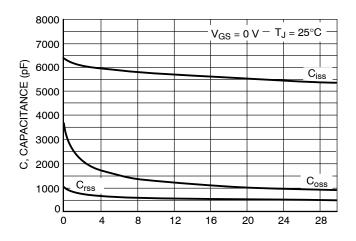
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 4)			•	•		
Turn-On Delay Time	t _{d(ON)}				15.7		
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			21.2		1
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 15 A, R_C$	$_{\rm G} = 3.0 \ \Omega$		44.6		ns
Fall Time	t _f	1			14.5		1
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.35	0.70	\ /
		$V_{GS} = 0 \text{ V},$ $I_{S} = 2.0 \text{ A}$	T _J = 125°C		0.26		\ \
Reverse Recovery Time	t _{RR}		•		39.1		
Charge Time	t _a	$V_{GS} = 0 \text{ V, dI}_{S}/\text{dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 23 \text{ A}$			20.1		ns
Discharge Time	t _b				19		
Reverse Recovery Charge	Q _{RR}				34		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.66		nΗ
Drain Inductance	L _D	т о			0.20		
Gate Inductance	L _G	T _A = 25°C			1.5		
Gate Resistance	R_{G}				0.7	2.0	Ω

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 6. Drain-to-Source Leakage Current


vs. Voltage

T_J, JUNCTION TEMPERATURE (°C)

Figure 5. On-Resistance Variation with

Temperature

TYPICAL PERFORMANCE CURVES

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

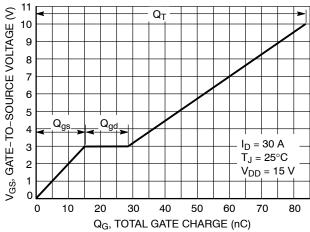


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

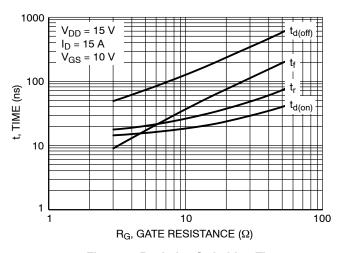


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

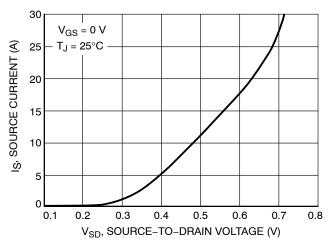


Figure 10. Diode Forward Voltage vs. Current

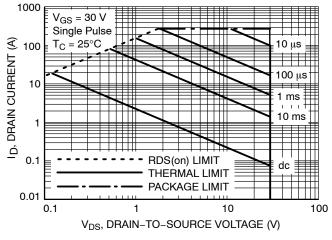


Figure 11. Maximum Rated Forward Biased Safe Operating Area

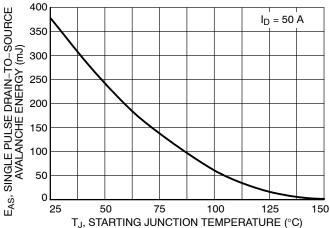


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA **ISSUE N**

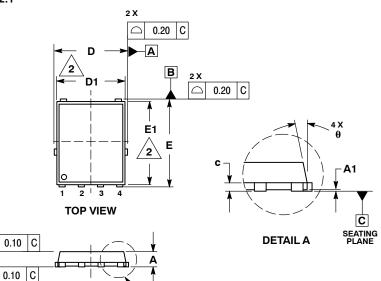
DATE 25 JUN 2018

NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.90	1.00	1.10		
A1	0.00		0.05		
b	0.33	0.41	0.51		
С	0.23	0.28	0.33		
D	5.00	5.15	5.30		
D1	4.70	4.90	5.10		
D2	3.80	4.00	4.20		
E	6.00	6.15	6.30		
E1	5.70	5.90	6.10		
E2	3.45	3.65	3.85		
е		1.27 BSC	;		
G	0.51	0.575	0.71		
K	1.20	1.35	1.50		
L	0.51	0.575	0.71		
L1	0.125 REF				
М	3.00	3.40	3.80		
θ	0 °		12 °		

GENERIC MARKING DIAGRAM*



XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week ZZ = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

SIDE VIEW

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

	DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
ſ	DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales