Very Low Forward Voltage Trench-based Schottky Rectifier Exceptionally Low $V_F = 0.455 \text{ V}$ at $I_F = 5 \text{ A}$ #### **Features** - Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage - Fast Switching with Exceptional Temperature Stability - Low Power Loss and Lower Operating Temperature - Higher Efficiency for Achieving Regulatory Compliance - Low Thermal Resistance - High Surge Capability - This is a Pb-Free Package ### **Typical Applications** - Switching Power Supplies including Notebook / Netbook Adapters, ATX and Flat Panel Display - High Frequency and DC-DC Converters - Freewheeling and OR-ing diodes - Reverse Battery Protection - Instrumentation #### **Mechanical Characteristics** - Case: Epoxy, Molded - Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Maximum for 10 sec ### ON Semiconductor® www.onsemi.com ## PIN CONNECTIONS #### **MARKING DIAGRAMS** A = Assembly Location Y = Year WW = Work Week AKA = Polarity Designator G = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. #### **MAXIMUM RATINGS** | Rating | | Symbol | Value | Unit | |--|-------------------------|--|-------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | | V _{RRM}
V _{RWM}
V _R | 80 | V | | Average Rectified Forward Current (Rated V _R , T _C = 115°C) | Per device
Per diode | I _{F(AV)} | 30
15 | A | | Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 110°C) | Per device
Per diode | I _{FRM} | 60
30 | A | | Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) | | I _{FSM} | 160 | А | | Operating Junction Temperature | | TJ | -40 to +150 | °C | | Storage Temperature | | T _{stg} | -40 to +150 | °C | | Voltage Rate of Change (Rated V _R) | | dv/dt | 10,000 | V/µs | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ### THERMAL CHARACTERISTICS | Rating | | Symbol | Value | Unit | |--|---------------------|-----------------|-------|------| | Maximum Thermal Resistance (insertion mounted to 1 oz FR4 Board) | Junction-to-Case | $R_{\theta JC}$ | 4.0 | °C/W | | | Junction-to-Ambient | $R_{\theta JA}$ | 105 | °C/W | ^{1.} Junction-to-Case, using large Heatsink attached to device. #### **ELECTRICAL CHARACTERISTICS** (Per Leg unless otherwise noted) | Rating | Symbol | Тур | Max | Unit | |---|----------------|----------------|------|------| | Maximum Instantaneous Forward Voltage (Note 3) | V _F | | | V | | $(I_F = 5 \text{ A}, T_J = 25^{\circ}\text{C})$ | | 0.516 | _ | | | $(I_F = 7.5 \text{ A}, T_J = 25^{\circ}\text{C})$
$(I_F = 15 \text{ A}, T_J = 25^{\circ}\text{C})$ | | 0.576
0.734 | 0.85 | | | (I _F = 5 A, T _J = 125°C) | | 0.455 | _ | | | $(I_F = 7.5 \text{ A}, T_J = 125^{\circ}\text{C})$ | | 0.522 | _ | | | (I _F = 15 A, T _J = 125°C) | | 0.627 | 0.68 | | | Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, T _J = 25°C) | I _R | 20 | 700 | μΑ | | (Rated dc Voltage, $T_J = 125^{\circ}C$) | | 8 | 30 | mA | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **ORDERING INFORMATION** | Device | Package | Shipping | |-------------|-----------------------|-----------------| | NTSJ3080CTG | TO-220FB
(Pb-Free) | 50 Units / Rail | ^{2.} Junction-to-Ambient, using with no Heatsink. ^{3.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2.0\%$ #### **TYPICAL CHARACTERISITICS** Figure 1. Typical Forward Voltage **Figure 2. Typical Reverse Current** Figure 3. Typical Junction Capacitance Figure 4. Current Derating per Leg Figure 6. Forward Power Dissipation #### **TYPICAL CHARACTERISITICS** Figure 7. Typical Transient Thermal Response, Junction-to-Case #### TO-220 FULLPACK, 3-LEAD CASE 221AH **DATE 30 SEP 2014** **FRONT VIEW** **ALTERNATE CONSTRUCTION** - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR UNCONTROLLED IN THIS AREA. - CONTOUR ONCOUNTIOLLED IN THIS AREA DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEA SURED AT OUTERMOST EXTREME OF THE PLASTIC BODY. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00. - CONTOURS AND FEATURES OF THE MOLDED PACKAGE BODY MAY VARY WITHIN THE ENVELOP DEFINED BY DIMENSIONS A1 AND H1 FOR MANUFACTURING PURPOSES. | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.30 | 4.70 | | | A1 | 2.50 | 2.90 | | | A2 | 2.50 | 2.90 | | | b | 0.54 | 0.84 | | | b2 | 1.10 | 1.40 | | | С | 0.49 | 0.79 | | | D | 14.70 | 15.30 | | | E | 9.70 | 10.30 | | | е | 2.54 BSC | | | | H1 | 6.60 7.1 | | | | L | 12.50 | 14.73 | | | L1 | | 2.80 | | | P | 3.00 | 3.40 | | | Q | 2.80 | 3.20 | | #### **GENERIC MARKING DIAGRAM*** = Assembly Location WL = Wafer Lot = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | STYLE 1: | | STYLE 2: | | |----------|-----------------|----------|---------| | PIN 1. | MAIN TERMINAL 1 | PIN 1. | CATHODE | | 2. | MAIN TERMINAL 2 | 2. | ANODE | | 3. | GATE | 3. | GATE | | DOCUMENT NUMBER: | 98AON52577E | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------------------|--|-------------|--| | DESCRIPTION: | TO-220 FULLPACK, 3-LEAD | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales