NUC2401MN

Integrated Common Mode Choke with Integrated ESD Protection

Description

The NUC2401MN is an Integrated Common Mode Filter for the elimination of common mode noise in high speed data line applications such as IEEE1394, USB2.0 and other LVDS type applications. ESD protection is integrated into the Common mode filter for superior protection and significant part count reduction.

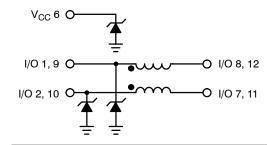
Features

- Common mode EMI Filtering and ESD Protection
- Integration of 5 Discrete components
- ±12 kV ESD Protection per IEC61000-4-2 (Contact Discharge)
- DFN: 2.0 x 2.2 mm Package
- Moisture Sensitivity Level 1
- ESD Rating: Machine Model (MM) = 1.6 kV; Human Body Model (HBM) = 16 kV
- This is a Pb-Free Device

Benefits

- Reduces EMI/RFI Emissions on a Data Line
- Integrated Solution offers Cost and Space Savings
- Reduces Parasitic Inductances Which Offer a More "Ideal" Common Mode Filtering
- Integrated Solution Improves System Reliability

Applications


- High Speed Differential Data Lines
- USB2.0
- IEEE1394
- LVDS
- MIPI
- MDDI

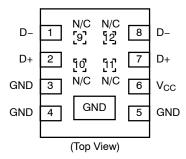
ON Semiconductor®

http://onsemi.com

SIMPLIFIED SCHEMATIC

MARKING DIAGRAM

DFN8 CASE 506BL


C2 = Specific Device Code

M = Date Code

= Pb-Free Device

(Note: Microdot may be in either location)

PIN CONNECTIONS*

*NOTE: Pins 1 and 9, Pins 2 and 10, Pins 7 and 11, Pins 8 and 12 are internally connected in pairs. It is recommended not to solder to Pins 9, 10, 11, 12.

ORDERING INFORMATION

Device	Package	Shipping [†]
NUC2401MNTAG	DFN8 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NUC2401MN

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Units
ESD Discharge IEC61000-4-2	Contact Discharge	V_{PP}	±12	kV
Operating Temperature Range		T _{OP}	-40 to 85	°C
Storage Temperature Range		T _{STG}	-55 to 125	°C
Maximum Lead Temperature for Soldering Purposes (1/8" from Case for 10 Seconds)		TL	260	°C
DC Current per Line		I _{LINE}	100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Reverse Working Voltage	V_{RWM}				5.0	V
Breakdown Voltage	V_{BR}	I _R = 1 mA	6.0	7.6	8.6	V
Leakage Current	I _R	V _{RWM} = 5.5 V			2.0	μΑ
Maximum Peak Pulse Current	I _{PP}	8x20 μs Waveform			12	Α
Clamping Voltage	V _C	I _{PP} = 5 A			10	V
Resistance Pin 1 to Pin 8	R_A			2.2	5.0	Ω
Resistance Pin 2 to Pin 7	R _B			2.2	5.0	Ω
Capacitance (Note 1)	C _{LINE} 1			0.8	1.0	pF
Capacitance (Note 2)	C _{LINE} 2			0.8	1.0	pF
Common Mode Cut-Off Frequency (Note 3)	f _{3dB}	(Above this Frequency, Appreciable Common Mode Attenuation Occurs)		40		MHz
Common Mode Impedance	Z _C	@ 100 MHz		90		Ω

- 1. Measured at 25°C, V_R = 0 V, f = 1 MHz, Pins 1 or 4 to GND. 2. Measured at 25°C, V_R = 0 V, f = 1 MHz, Pins 8 or 5 to GND. 3. 50 Ω source and 50 Ω load termination.

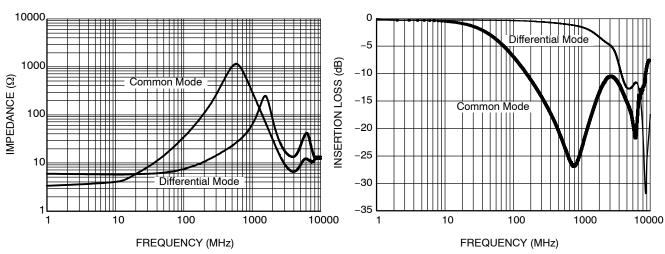
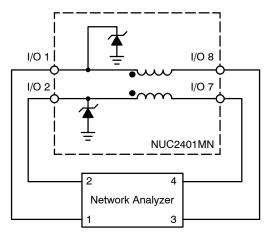



Figure 1. Impedance Characteristics vs. Frequency

Figure 2. Insertion Loss Characteristics vs. Frequency

NUC2401MN

Normal (Differential) Mode

Figure 3. Normal (Differential) Mode Test Configuration

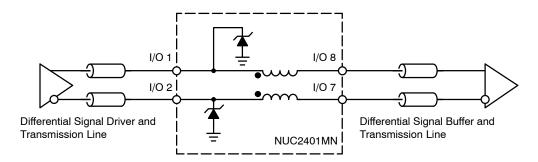
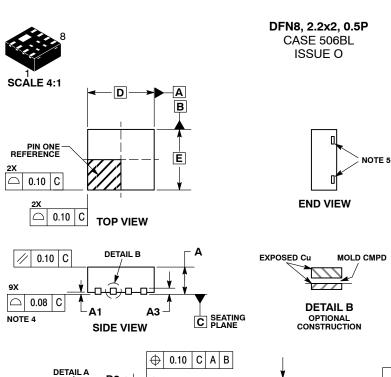
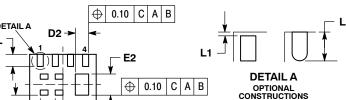



Figure 4. Application Circuit

DATE 05 NOV 2008


- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION b APPLIES TO PLATED TERMINAL
- AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL.
- U.3U mm FHOM I EHMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 EXPOSED ENDS OF THE TERMINALS ARE ELECTRICALLY ACTIVE.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.80	1.00			
A1	0.00	0.05			
А3	0.20	REF			
b	0.15	0.25			
D	2.20 BSC				
D2	0.34	0.54			
E	2.00 BSC				
E2	0.60	0.80			
е	0.50 BSC				
K	0.20				
L	0.30	0.50			
11		0.15			

0.10 C A B

С 0.05

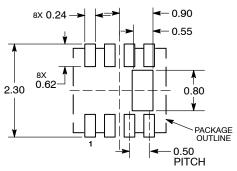
NOTE 3

8X **b**

 \oplus

(0.20)

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

= Date Code

= Pb-Free Device

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON35711E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN8, 2.2X2.0, 0.5P		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

е

(0.28)(0.825)

(0.50)

e/2

BOTTOM VIEW

 $\square \sqcup$

ΔX

(0.25)**AUXILIARY BOTTOM VIEW** (FOR REFERENCE ONLY)

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales